Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9432, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658766

ABSTRACT

Novel psychoactive substances (NPS) represent a broad class of drugs new to the illicit market that often allow passing drug-screening tests. They are characterized by a variety of structures, rapid transience on the drug scene and mostly unknown metabolic profiles, thus creating an ever-changing scenario with evolving analytical targets. The present study aims at developing an indirect screening strategy for NPS monitoring, and specifically for new synthetic opioids (NSOs), based on assessing changes in endogenous urinary metabolite levels as a consequence of the systemic response following their intake. The experimental design involved in-vivo mice models: 16 animals of both sex received a single administration of morphine or fentanyl. Urine was collected before and after administration at different time points; the samples were then analysed with an untargeted metabolomics LC-HRMS workflow. According to our results, the intake of opioids resulted in an elevated energy demand, that was more pronounced on male animals, as evidenced by the increase in medium and long chain acylcarnitines levels. It was also shown that opioid administration disrupted the pathways related to catecholamines biosynthesis. The observed alterations were common to both morphine and fentanyl: this evidence indicate that they are not related to the chemical structure of the drug, but rather on the drug class. The proposed strategy may reinforce existing NPS screening approaches, by identifying indirect markers of drug assumption.


Subject(s)
Analgesics, Opioid , Fentanyl , Metabolomics , Morphine , Animals , Male , Female , Mice , Metabolomics/methods , Analgesics, Opioid/urine , Fentanyl/analogs & derivatives , Fentanyl/urine , Fentanyl/metabolism , Chromatography, High Pressure Liquid/methods , Morphine/urine , Psychotropic Drugs/urine , Mass Spectrometry/methods , Metabolome/drug effects
2.
Anal Chim Acta ; 1303: 342529, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609268

ABSTRACT

BACKGROUND: Novel psychoactive substances (NPS) are a group of substances, mainly of synthetic origin, characterized by toxicological properties extremely dangerous. The main difficulty in recognizing NPS in seizures and biological samples lies in their dynamic nature, related to the continuous synthesis and introduction on the market of new drugs, often with very similar structures to existing ones. The aim of this study was the creation of a robust and versatile method for the analysis of traditional drugs and NPS in different matrices. RESULTS: Both target analysis and suspect screening methodologies were developed. The strategy used for suspect screening allowed to collect data through a scheduled multi reaction monitoring (sMRM) survey which triggered the collection of enhanced product ion (EPI) spectra when a compound met information dependent acquisition (IDA) criteria. The retention time of the different drugs, which was crucial to define the sMRM survey scan parameters, was predicted with a Quantitative Structure Retention (Chromatographic) Relationship (QSRR) model by Multiple Linear Regression. The model was validated through the evaluation of training set predictions, an external validation set and a leave-one out strategy; the results showed that the method fit for its purpose. The target method was validated in oral fluid as a testing matrix, with excellent results in term of recovery, accuracy, precision and matrix effect. Finally, the performances of the suspect method were evaluated by analysing a mixture containing 8 reference standards not included in the initial dataset, as well as seizures and real oral fluid samples. Four NPS were putatively identified in the analysed samples. SIGNIFICANCE: The advantage of the proposed approach is the possibility of quantifying 65 classical drugs of abuse and NPS and, at the same time, detect and putatively identify 146 additional drugs in one single LC-MS/MS run. This is an innovative strategy for multi analyte detection and enables detection of low concentrations of drugs in complex biological matrices such as oral fluid. Considering the highly dynamic drug market, a strength of this strategy is that the analytical method can be kept up to date through the addition of new compounds based on the last drug monitoring bodies alerts without the need of authentic standards.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Drug Monitoring , Seizures
3.
Front Chem ; 11: 1238793, 2023.
Article in English | MEDLINE | ID: mdl-37564111

ABSTRACT

Introduction: The analysis of organic residue in ancient vessels to investigate early-age civilization habits is an important archeological application that needs advanced analytical methods. However, these procedures should meet inherent requisites such as low sampling invasiveness and high sensitivity for trace analysis. This study deals with the development of advanced analytical methods for the detection of opium alkaloids in ceramic vessels and its first application to the study of Daunian pots dating back to the VIII-IV sec BC. Methods: All the stages of the analytical procedure, from sampling to analysis, were carefully optimized. Concerning sampling, the traditional scraping approach was compared with a swabbing strategy which permitted minimizing sample encroachment. Extraction was based on pressurized liquid extraction or ultrasound-assisted liquid extraction, followed by dispersive liquid-liquid microextraction, which allowed concentration enrichment. On the other hand, a UHPLC-MS/MS method was specifically developed and validated to obtain reliable data. Some Daunian pots, belonging to the Ceci-Macrini private archeological collection, were selected for sample withdrawal as their iconography could suggest opium usage. Results: Several of the analyzed samples resulted positive to thebaine and less frequently to morphine and codeine; furthermore, 70% of the analyzed items tested positive for at least one opium alkaloid. Positive findings were common to all the samples collected in the pots, suggesting that scraping and swabbing provided comparable results and validating this unusual sampling strategy. All samples were additionally analyzed by UHPLC-HRMS to further improve the confidence level of the identified compounds. The obtained results shed new light on the hypothesis of opium usage by the ancient Daunian civilization. Furthermore, this study provided suitable analytical tools for further investigations on the same topic, with a good level of confidence in the quality of the results.

4.
Molecules ; 28(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37513166

ABSTRACT

To date, it is still not possible to obtain exhaustive information about organic materials in cultural heritage without sampling. Nonetheless, when studying unique objects with invaluable artistic or historical significance, preserving their integrity is a priority. In particular, organic dye identification is of significant interest for history and conservation research, but it is still hindered by analytes' low concentration and poor fastness. In this work, a minimally invasive approach for dye identification is presented. The procedure is designed to accompany noninvasive analyses of inorganic substances for comprehensive studies of complex cultural heritage matrices, in compliance with their soundness. Liquid extraction of madder, turmeric, and indigo dyes was performed directly from paint layers and textiles. The extraction was supported by hydrogels, which themselves can undergo multitechnique analyses in the place of samples. After extraction, Ag colloid pastes were applied on the gels for SERS analyses, allowing for the identification of the three dyes. For the HPLC-MS/MS analyses, re-extraction of the dyes was followed by a clean-up step that was successfully applied on madder and turmeric. The colour change perceptivity after extraction was measured with colorimetry. The results showed ΔE values mostly below the upper limit of rigorous colour change, confirming the gentleness of the procedure.

5.
Molecules ; 28(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513206

ABSTRACT

The introduction of synthetic dyes completely changed the industrial production and use of colorants for art materials. From the synthesis of the first synthetic dye, mauveine, in 1856 until today, artists have enjoyed a wider range of colors and selection of chemical properties than was ever available before. However, the introduction of synthetic dyes introduced a wider variety and increased the complexity of the chemical structures of marketed dyes. This work looks towards the analysis of synthetically dyed objects in heritage collections, applying an extraction protocol based on the use of ammonia, which is considered favorable for natural anthraquinone dyes but has never before been applied to acid synthetic dyes. This work also presents an innovative cleanup step based on the use of an ion pair dispersive liquid-liquid microextraction for the purification and preconcentration of historical synthetic dyes before analysis. This approach was adapted from food science analysis and is applied to synthetic dyes in heritage science for the first time in this paper. The results showed adequate recovery of analytes and allowed for the ammonia-based extraction method to be applied successfully to 15 samples of suspected azo dyes from the Azienda Coloranti Nazionali e Affini (ACNA) synthetic dye collection, identified through untargeted HPLC-HRMS analyses.

6.
Talanta ; 257: 124392, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36863295

ABSTRACT

The present study encompasses the development of a fast and reliable analytical method to quantify the main endocannabinoids and some of their conjugated congeners, particularly N-arachidonoyl amino acids, in brain tissue. Samples were homogenized and a micro solid phase extraction (µSPE) procedure was developed for brain homogenate clean-up. Miniaturized SPE was selected as it allowed to work with reduced sample amounts, while maintaining high sensitivity; this last feature was mandatory due to the low concentration of endocannabinoids in biological matrices that makes their determination a challenging analytical task. UHPLC-MS/MS was used for the analysis as it provided a great sensitivity, especially for conjugated forms that were detected by negative ionization. Polarity switching was applied during the run; low limits of quantification were between 0.003 ng g-1 and 0.5 ng g-1. This method provided also low matrix effect (lower than 30%) and good extraction recoveries in the brain. To the best of our knowledge, this is the first time that µSPE is applied on this matrix for this class of compounds. The method was validated according to international guidelines, and then tested on real cerebellum samples from mice, which were sub-chronically treated with URB597, a well-known inhibitor of the fatty acid amide hydrolase.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Animals , Mice , Chromatography, High Pressure Liquid/methods , Endocannabinoids/chemistry , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Brain
7.
Article in English | MEDLINE | ID: mdl-36174265

ABSTRACT

In recent years, increased use of ammunition without lead and heavy metals was observed, leading to a growing interest in the detection of organic gunshot residues (OGSR) as evidence of firearms related crimes. The wide range of compounds belonging to the OGSR class hinders their mass spectrometric detection as different ionization techniques may be needed to obtain good results for all compounds. The purpose of this work was the development of a reliable analytical method by means of UHPLC-HRMS for the determination in oral fluid (OF) of the most common explosives and the most used stabilizers, arising from fire discharge and post-deflagration residues. For this purpose, SPE was used for OF clean-up before UHPLC-HRMS analysis. All target analytes were chromatographically separated by means of a Polar-C18 column. A chlorinated compound was added to the mobile phases in order to promote the formation of chloride adduct ions in the electrospray ion source operating in polarity switching to allow the best conditions for each analyte. The detection was conducted by means of a high-resolution mass spectrometer equipped with Orbitrap technology working in data dependent acquisition mode, in order to detect both the precursor ions and/or the most intense fragments for stabilizers. To verify its potential, the method was tested on real samples: a shooting session was performed in an open shooting range; the shooters fired from 2 to 20 rounds with a 9x21 caliber, thereafter OF was sampled. Samples were analyzed confirming that explosives may be detected in OF; the use of this matrix may be of great interest for investigative purposes as it is less affected by secondary transfer when compared to other commonly sampled matrices. The developed method could be a useful tool for law enforcement authorities for the detection of explosives in forensic potential scenarios, including biological matrices.


Subject(s)
Explosive Agents , Firearms , Chlorides , Chromatography, High Pressure Liquid/methods , Forensic Medicine/methods , Mass Spectrometry/methods
8.
Molecules ; 26(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641416

ABSTRACT

Fentanyl and fentalogs' intake as drugs of abuse is experiencing a great increase in recent years. For this reason, there are more and more cases in which it is important to recognize and quantify these molecules and related metabolites in biological matrices. Oral fluid (OF) is often used to find out if a subject has recently used a psychoactive substance and if, therefore, the person is still under the effect of psychotropics. Given its difficulty in handling, good sample preparation and the development of instrumental methods for analysis are essential. In this work, an analytical method is proposed for the simultaneous determination of 25 analytes, including fentanyl, several derivatives and metabolites. OF was collected by means of passive drool; sample pretreatment was developed in order to be fast, simple and possibly semi-automated by exploiting microextraction on packed sorbent (MEPS). The analysis was performed by means of LC-HRMS/MS obtaining good identification and quantification of all the analytes in less than 10 min. The proposed method was fully validated according to the Scientific Working Group for Forensic Toxicology (SWGTOX) international guidelines. Good results were obtained in terms of recoveries, matrix effect and sensitivity, showing that this method could represent a useful tool in forensic toxicology. The presented method was successfully applied to the analysis of proficiency test samples.


Subject(s)
Chromatography, Liquid/methods , Fentanyl/analysis , Fentanyl/metabolism , Mass Spectrometry/methods , Saliva/metabolism , Solid Phase Microextraction/methods , Adult , Female , Healthy Volunteers , Humans , Limit of Detection , Male , Middle Aged , Narcotics/analysis , Narcotics/metabolism , Young Adult
9.
Forensic Sci Int ; 326: 110904, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34371393

ABSTRACT

In recent years, the availability and the consequent consumption of New Psychoactive Substances (NPS) have proliferated at an unprecedented rate, posing a significant risk to the public health and challenging the law enforcement efforts to tackle the black market. In particular, large availability on Internet and unmonitored shipping have facilitated the diffusion of NPS on national territories. In this scenario, the forensic activity based on the process of drug detection, including investigation, seizure, recognition and analytical identification is crucial to get insights into the drug black market transformation. In this study, we describe the results obtained from the analysis of hundreds of packages seized during the months of year 2020, and suspected to contain NPS because not reacting with standard field test kits. We focused on the analysis by GC-MS and HPLC-HRMS, and NPS in particular, trying to underline the most common molecules present on the Italian territory during the COVID-19 pandemic. NPS were identified in 92.6% of the samples. The most prevalent compounds were synthetic cathinones, and 3-MMC in particular, which alone accounted for 18.6% of the total cases. Other prevalent molecules were 5F-MDMB-PICA, 2-FDCK, 1cp-LSD and 1P-LSD. Fentanyl was never detected. The information obtained from drug seizures is crucial to publish national alerts, which are in turn important to assist the legislative effort to ban new compounds and the update of toxicological and analytical methods.

10.
Metabolites ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578841

ABSTRACT

The diffusion of new psychoactive substances (NPS) is highly dynamic and the available substances change over time, resulting in forensic laboratories becoming highly engaged in NPS control. In order to manage NPS diffusion, efficient and innovative legal responses have been provided by several nations. Metabolic profiling is also part of the analytical fight against NPS, since it allows us to identify the biomarkers of drug intake which are needed for the development of suitable analytical methods in biological samples. We have recently reported the characterization of two new analogs of fentanyl, i.e., 4-fluoro-furanylfentanyl (4F-FUF) and isobutyrylfentanyl (iBF), which were found for the first time in Italy in 2019; 4F-FUF was identified for the first time in Europe and was notified to the European Early Warning System. The goal of this study was the characterization of the main metabolites of both drugs by in vitro and in vivo experiments. To this end, incubation with mouse hepatocytes and intraperitoneal administration to mice were carried out. Samples were analyzed by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), followed by untargeted data evaluation using Compound Discoverer software with a specific workflow, designed for the identification of the whole metabolic pattern, including unexpected metabolites. Twenty metabolites were putatively annotated for 4-FFUF, with the dihydrodiol derivative appearing as the most abundant, whereas 22 metabolites were found for iBF, which was mainly excreted as nor-isobutyrylfentanyl. N-dealkylation of 4-FFUF dihydrodiol and oxidation to carbonyl metabolites for iBF were also major biotransformations. Despite some differences, in general there was a good agreement between in vitro and in vivo samples.

11.
J Anal Toxicol ; 45(9): 927-936, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-33002142

ABSTRACT

The measurement of ethyl glucuronide (EtG) in hair is an established practice to evaluate alcohol consumption habits of the donors; nevertheless, analytical variability has shown to be an important factor to be considered: measured EtG values can vary significantly as a consequence of analyte washout during decontamination, pulverization of samples, extraction solvent and incubation temperature. In the present study, we described a new method for automated hair decontamination and EtG extraction from the inner core of the hair by using pressurized liquid extraction (PLE), followed by solid-phase extraction (SPE) cleanup; validation was performed according to SWGTOX guidelines. The extraction efficiency of the new method was evaluated by comparing the results with those obtained by a validated and ISO/IEC 17025:2005 accredited method; an average positive difference of + 32% was observed when the extraction was performed by PLE. The effect of hair pulverization was also studied, and a good correlation between cut and milled hair was observed, implying that PLE allowed a highly efficient extraction of EtG from the inner keratin core of the hair, no matter if it has been cut or pulverized. Finally, to verify the results, paired aliquots of 27 real hair samples were analyzed with both PLE and a protocol optimized by design-of-experiment strategies planned to maximize the extraction yield; in this case, a comparable efficiency was observed, suggesting that exhaustive EtG extraction was obtained with both approaches. This finding opens new perspectives in the eligible protocols devoted to hair EtG analysis, in terms of speed, automation and reproducibility.


Subject(s)
Alcoholism , Tandem Mass Spectrometry , Alcohol Drinking , Biomarkers , Chromatography, Liquid , Glucuronates , Humans , Reproducibility of Results , Substance Abuse Detection
12.
Front Chem ; 8: 572952, 2020.
Article in English | MEDLINE | ID: mdl-33324608

ABSTRACT

New Psychoactive Substances (NPS) are a global concern since they are spreading at an unprecedented rate. Despite their commerce still being limited compared to traditional illicit drugs, the identification of NPS in seizures may represent a challenge because of the variety of possible structures. In this study we report the successful application of molecular networking (MN) to identify unexpected fentanyl analogs in two seizures. The samples were extracted with 1 mL of methanol and analyzed with an untargeted data-dependent acquisition approach by LC-HRMS. The obtained data were examined using the MN workflow within the Global Natural Product Search (GNPS). A job was submitted to GNPS by including both seizures and standard mixtures containing synthetic cannabinoids and fentanyls raw files; spectra obtained from standards were used to establish representative networks for both molecular classes. All synthetic cannabinoids in the mixture were linked together resulting in a molecular network despite their different fragmentation spectra. Looking at fentanyls, all the molecules with the typical 188.143 and 105.070 fragments were combined in a representative network. By exploiting the standard networks two unexpected fentanyls were found in the analyzed seizures and were putatively annotated as para-fluorofuranylfentanyl and (iso)butyrylfentanyl. The identity of these two fentanyl analogs was confirmed by NMR analysis. Other m/z ratios in the seizures were compatible with fentanyl derivatives; however, they appeared to be minor constituents, probably impurities or synthetic byproducts. The latter might be of interest for investigations of common fingerprints among different seizures.

13.
Molecules ; 25(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244963

ABSTRACT

Vesuvius eruption that destroyed Pompeii in AD 79 represents one of the most important events in history. The cataclysm left behind an abundance of archeological evidence representing a fundamental source of the knowledge we have about ancient Roman material culture and technology. A great number of textiles have been preserved, rarely maintaining traces of their original color, since they are mainly in the mineralized and carbonized state. However, one outstanding textile sample displays a brilliant purple color and traces of gold strips. Since the purple was one of the most exclusive dyes in antiquity, its presence in an important commercial site like Pompeii induces us to deepen the knowledge of such artifacts and provide further information on their history. For this reason, the characterization of the purple color was the main scope of this research, and to deepen the knowledge of such artifacts, the SERS (Surface Enhanced Raman Scattering) in solution approach was applied. Then, these data were enriched by HPLC-HRMS analyses, which confirmed SERS-based hypotheses and also allowed to hypothesize the species of the origin mollusk. In this context, a step-by-step integrated approach resulted fundamental to maximize the information content and to provide new data on textile manufacturing and trade in antiquity.


Subject(s)
Biological Products/chemistry , Coloring Agents/chemistry , Minerals/chemistry , Textiles/analysis , Biological Products/analysis , Chromatography, High Pressure Liquid , Coloring Agents/analysis , Microscopy , Minerals/analysis , Spectrum Analysis, Raman
14.
J Chromatogr A ; 1605: 360348, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31315812

ABSTRACT

The increasing phenomenon of drug addiction and the introduction of New Psychoactive Substances (NPS) have led to a progressive growth of research in the field of forensic analytical toxicology, with the need to develop modern and faster analytical procedures. Hair testing has gained increasing attention and recognition as a complement to blood and urine analysis, since it is a unique material for the retrospective detection of drugs, due to its large detection window. In this paper, a multiclass method for the simultaneous extraction, identification and quantification of sixty drugs of abuse belonging to different chemical classes in hair is proposed. This method can provide a valid, fast, simple and low-cost alternative to common tests; at the same time, it provides quantitative results, to concurrently confirm the assumption of one or more illicit substances. Both the decontamination step and the extraction of the analytes from the inner core of the hair were carried out by means of pressurized liquid extraction (PLE) while the clean-up was performed by dispersive liquid/liquid microextraction (dLLME), giving the great advantage of a high enrichment factor. The selected chromatographic conditions allowed a satisfying separation of the 60 analytes in 14 min, while the detection was conducted with a high-resolution mass spectrometer with Orbitrap technology. This multiclass method was suitable for analytes with different chemical characteristics allowing to reduce time and cost of analysis, organic solvent volume and the amount of sample required for analysis. The whole method was fully validated as confirmatory method following SWGTOX guidelines.


Subject(s)
Forensic Toxicology/methods , Hair/chemistry , Illicit Drugs/analysis , Liquid Phase Microextraction , Substance Abuse Detection/methods , Chromatography, High Pressure Liquid , Humans , Limit of Detection , Mass Spectrometry , Retrospective Studies , Solvents/analysis , Urinalysis
15.
Phytochemistry ; 158: 91-95, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30481664

ABSTRACT

An undescribed labdane-like diterpene with a rare spiro-ß-lactone function was identified from the ethanol extract of the male cones of the coniferous tree Wollemia nobilis. This spirolabdadienolide (IUPAC name: syn-ent-8(17),13-labdadien-19,18-olid-15-oic acid methyl ester; trivial name: wollemolide), was isolated by means of traditional and high performance chromatography techniques and structurally elucidated through NMR and MS. In addition, six further known metabolites were evidenced in the extract. Wollemolide, which may be considered an additional chemotaxonomic marker, and 4'-O-methyl-scutellarein, a simple flavonoid, had not been isolated in our previous phytochemical study on the same plant organ. This demonstrates how the molecular pattern of a plant species is in continuous movement and changes with the passing of time according to the climate of the year.


Subject(s)
Diterpenes/analysis , Flavonoids/analysis , Spiro Compounds/analysis , Tracheophyta/chemistry , Tracheophyta/metabolism , Diterpenes/chemistry , Flavonoids/chemistry , Fruit/chemistry , Fruit/metabolism , Italy , Lactones/analysis , Lactones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Seasons , Spectrometry, Mass, Electrospray Ionization , Spiro Compounds/chemistry
16.
J Anal Toxicol ; 41(8): 688-697, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28985323

ABSTRACT

MT-45 is a synthetic opioid with a pharmacological activity comparable to morphine and it has been involved in intoxications and fatalities reported in Europe and in USA. It was recently subject to control measures, but to date the metabolic pathways of the substance are still unknown. Using rat hepatocytes and LC-HRMS, 14 novel Phase I and II MT-45 metabolites were identified, products of monohydroxylation, dihydroxylation and N-dealkylation; glucuronide conjugation of mono- and dihydroxylated metabolites also occurred. The detected metabolites were firstly predicted in silico, then incubation of the drug with rat hepatocytes was carried out and the obtained metabolites were identified by LC-HRMS, with retention times, mass shift between theoretical mass and observed mass (<5 ppm), peak abundance and fragmentation pattern. Hydroxylated MT-45 was found to be the major metabolite of MT-45 in vitro experiments. The presence of all metabolites was confirmed by in vivo experiments in urine samples of CD-1 male mice; in these samples hydroxy-MT-45-glucuronide and di-hydroxy-MT-45-glucuronide are the most abundant metabolites, while the parent drug is found at concentration <10 ng mL-1 after 300 min. The knowledge of Phase I and II MT-45 metabolite structure is then crucial to develop analytical methods to identify MT-45 consumption in clinical and forensic testing.


Subject(s)
Hepatocytes/metabolism , Piperazines/metabolism , Animals , Computer Simulation , Male , Piperazines/analysis , Rats , Substance Abuse Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...