Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38676261

ABSTRACT

This study aimed to use a data-driven approach to identify individualized speed thresholds to characterize running demands and athlete workload during games and practices in skill and linemen football players. Data were recorded from wearable sensors over 28 sessions from 30 male Canadian varsity football athletes, resulting in a total of 287 performances analyzed, including 137 games and 150 practices, using a global positioning system. Speed zones were identified for each performance by fitting a 5-dimensional Gaussian mixture model (GMM) corresponding to 5 running intensity zones from minimal (zone 1) to maximal (zone 5). Skill players had significantly higher (p < 0.001) speed thresholds, percentage of time spent, and distance covered in maximal intensity zones compared to linemen. The distance covered in game settings was significantly higher (p < 0.001) compared to practices. This study highlighted the use of individualized speed thresholds to determine running intensity and athlete workloads for American and Canadian football athletes, as well as compare running performances between practice and game scenarios. This approach can be used to monitor physical workload in athletes with respect to their tactical positions during practices and games, and to ensure that athletes are adequately trained to meet in-game physical demands.


Subject(s)
Athletes , Running , Humans , Running/physiology , Male , Canada , Athletic Performance/physiology , Geographic Information Systems , Young Adult , Football/physiology , Adult , Soccer/physiology
2.
J Neurosurg ; 141(2): 436-444, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38364223

ABSTRACT

OBJECTIVE: This study investigated the association between head impact exposure (HIE) during varsity Canadian football games and short-term changes in cortical excitability of the primary motor cortex (M1) using transcranial magnetic stimulation (TMS). METHODS: Twenty-nine university-level male athletes wore instrumented mouth guards during a football game to measure HIE. TMS measurements were conducted 24 hours before and 1-2 hours after the game. Twenty control football athletes were submitted to a noncontact training session and underwent identical TMS assessments. Between-group changes in short-interval intracortical inhibition (SICI) ratios over time were conducted using two-way ANOVAs. The relationship between HIE (i.e., number, magnitude, and cumulative forces of impacts) and SICI (secondary outcome) was also investigated using Pearson correlations. RESULTS: Relative to controls, the group of athletes who had played a full-contact football game exhibited a significant intracortical disinhibition (p = 0.028) on the SICI 3-msec protocol (i.e., short interstimulus interval of 3 msec) within hours following the game. Moreover, exposure to ≥ 40g hits positively correlated with SICI disinhibition (p < 0.05). CONCLUSIONS: Athletes exposed to subconcussive hits associated with Canadian football exhibit abnormal M1 corticomotor inhibition function, particularly when the recorded impact magnitude was ≥ 40g. Given the deleterious effects of decreased inhibition on motor control and balance, systematically tracking head impact forces at each game and practice with contacts could prove useful for injury prevention in contact sports.


Subject(s)
Football , Motor Cortex , Transcranial Magnetic Stimulation , Humans , Male , Motor Cortex/physiology , Motor Cortex/physiopathology , Young Adult , Football/injuries , Canada , Evoked Potentials, Motor/physiology , Brain Concussion/physiopathology , Adult , Athletes
3.
Neuropsychol Rev ; 33(1): 144-159, 2023 03.
Article in English | MEDLINE | ID: mdl-32577950

ABSTRACT

Sport-related concussion (SRC) is managed primarily through serial clinical evaluations throughout recovery. However, studies suggest that clinical measures may not be suitable to detect subtle alterations in functioning and are limited by numerous internal and external factors. Electroencephalography (EEG) has been used for over eight decades to discern altered function following illnesses and injuries, including traumatic brain injury. This study evaluated the associations between EEG measures and clinical presentation within three-months following SRC. A systematic review of the literature was performed in Medline, Embase, PsycINFO, CINAHL and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines, yielding a total of 13 peer-reviewed articles. Most studies showed low to moderate bias and moderate to high quality. The majority of the existing literature on the impact of concussion within the first 3 months post-injury suggests that individuals with concussion show altered brain function, with EEG abnormalities outlasting clinical dysfunction. Of all EEG biomarkers evaluated, P300 shows the most promise and should be explored further. Despite the relatively high quality of included articles, significant limitations are still present within this body of literature, including potential conflicts of interest and proprietary algorithms, making it difficult to draw strong and meaningful conclusions on the use of EEG in the early stages of SRC. Therefore, further exploration of the relationship between EEG measures and acute clinical presentation is warranted to determine if EEG provides additional benefits over current clinical assessments and is a feasible tool in clinical settings.


Subject(s)
Athletic Injuries , Brain Concussion , Sports , Humans , Athletic Injuries/diagnosis , Athletic Injuries/therapy , Brain Concussion/diagnosis , Brain Concussion/therapy , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL