Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 142: 106960, 2024 01.
Article in English | MEDLINE | ID: mdl-37944368

ABSTRACT

Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by ß-lactam antibiotics, but since M. tuberculosis has a chromosomal ß-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.


Subject(s)
Mycobacterium tuberculosis , Peptidyl Transferases , Tuberculosis , Humans , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , beta-Lactams/pharmacology , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , Tuberculosis/microbiology
2.
Biochem Biophys Res Commun ; 308(3): 553-9, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-12914786

ABSTRACT

In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K(i)=90 microM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.


Subject(s)
Acyclovir/chemistry , Enzyme Inhibitors/chemistry , Models, Molecular , Purine-Nucleoside Phosphorylase/chemistry , Acyclovir/metabolism , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Hydrogen Bonding , Ligands , Macromolecular Substances , Phosphates/chemistry , Protein Conformation , Purine-Nucleoside Phosphorylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...