Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 113(7): 1749-1768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679232

ABSTRACT

Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.


Subject(s)
Oligonucleotides , Humans , Oligonucleotides/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/chemistry , Drug Approval , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , United States , Drug Packaging/methods , Chemistry, Pharmaceutical/methods
2.
J Pharm Sci ; 113(5): 1123-1154, 2024 May.
Article in English | MEDLINE | ID: mdl-38369020

ABSTRACT

Interest in minitablets (MTs) has grown exponentially over the last 20 years and especially the last decade, as evidenced by the number of publications cited in Scopus and PubMed. MTs offer significant opportunities for personalized medicine, dose titration and flexible dosing, taste masking, and customizing drug delivery systems. Advances in specialized MT tooling, manufacturing, and characterization instrumentation have overcome many of the earlier development issues. Breakthrough MT swallowability, acceptability, and palatability research have challenged the long-standing idea that only liquids are acceptable dosage forms for infants and young children. MTs have been shown to be a highly acceptable dosage form for infants, small children, and geriatric patients who have difficulty swallowing. This review discusses the current state of MT applications, acceptability in pediatric and geriatric populations, medication adherence, manufacturing processes such as tableting and coating, running powder and tablet characterization, packaging and MT dispensing, and regulatory considerations.


Subject(s)
Drug Delivery Systems , Drug Packaging , Infant , Humans , Child , Child, Preschool , Aged , Administration, Oral , Tablets , Precision Medicine
3.
Eur J Pharm Sci ; 161: 105806, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33722733

ABSTRACT

A present investigation aimed for multivariate modeling as a solution to resolve inaccuracy in dissolution testing experienced in the use of in-situ UV fiber optics dissolution systems (FODS) due to signal saturation problems. This problem is specifically encountered with high absorbance of moderate to high dose formulations. A high absorbance not only impede a real-time assessment but can also result in inaccurate dissolution profiles. Full spectra (F) and low absorbance regions (L) were employed to develop linear and quadratic (Q) partial least squares (PLS) and principal component regression (PCR) models. The conventional dissolution of atenolol, ibuprofen, and metformin HCl immediate-release (IR) tablets followed by HPLC analysis was used as a reference method to gauge multivariate models' performance in the 'built-in' Opt-Diss model. The linear multivariate modeling outputs resulted in accurate dissolution profiles, despite the potentially high UV signal saturation at later time points. Conversely, the 'built-in' Opt-Diss model and multivariate quadratic models failed to predict dissolution profiles accurately. The current studies show a good agreement in the predictions across both low absorbance region and full spectra, demonstrating the multivariate models' robust predictability. Overall, linear PLS and PCR models showed statistically similar results, which demonstrated their applicative flexibility for using FODS despite signal saturation and provides a unique alternative to traditional and labor-intensive UV or HPLC dissolution testing.


Subject(s)
Ibuprofen , Drug Compounding , Least-Squares Analysis , Solubility , Tablets
4.
Int J Pharm ; 597: 120320, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33539999

ABSTRACT

The oral administration of sildenafil citrate (SC) for the treatment of pulmonary arterial hypertension is associated with several drawbacks. The study aimed to design and formulate SC-loaded inhalable poly (lactic-co-glycolic acid) [PLGA] large porous microparticles (LPMs) for pulmonary delivery. A factorial design was used to study the effect of the composition of LPMs on physicochemical properties. The study also evaluated the effect of glucose and L-leucine concentration on the formulation. The developed LPMs demonstrated an acceptable yield% (≤48%), large geometric particle size (>5µm) with a spherical and porous surface, and sustained drug release (up to 48 h). Increasing the concentration of poly(ethyleneimine) from 0.5% to 1% in SC-loaded LPMs led to an increase in entrapment efficiency from ~3.02% to ~94.48%. The optimum LPMs showed adequate aerodynamic properties with a 97.68 ± 1.07% recovery, 25.33 ± 3.32% fine particle fraction, and low cytotoxicity. Intratracheal administration of LPMs demonstrated significantly higher lung deposition, systemic bioavailability, and longer retention time (p < 0.05) compared to orally administered Viagra® tablets. The study concluded that SC-loaded LPMs could provide better therapeutic efficacy, reduced dosing frequency, and enhanced patient compliance.


Subject(s)
Sildenafil Citrate , Administration, Inhalation , Freeze Drying , Humans , Particle Size , Porosity
5.
ACS Appl Bio Mater ; 3(9): 5664-5677, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021798

ABSTRACT

This study represents a successful approach toward employing polycaprolactone-polyamidoamine (PCL-PAMAM) linear dendritic block copolymer (LDBC) nanoparticles as small-molecule carriers in NIR imaging and photothermal therapy. A feasible and robust synthetic strategy was used to synthesize a library of amphiphilic LDBCs with well-controlled hydrophobic-to-hydrophilic weight ratios. Systems with a hydrophobic weight ratio higher than 70% formed nanoparticles in aqueous media, which show hydrodynamic diameters of 51.6 and 96.4 nm. These nanoparticles exhibited loading efficiencies up to 21% for a hydrophobic molecule and 64% for a hydrophilic molecule. Furthermore, successful cellular uptake was observed via trafficking into endosomal and lysosomal compartments with an encapsulated NIR theranostic agent (C3) without inducing cell death. A preliminary photothermal assessment resulted in cell death after treating the cells with encapsulated C3 and exposing them to NIR light. The results of this work confirm the potential of these polymeric materials as promising candidates in theranostic nanomedicine.

6.
J Control Release ; 302: 126-139, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30940497

ABSTRACT

Pulmonary delivery of vasodilators is a promising alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). The aim of this study was to design and evaluate hydrogel microparticles as a carrier for sustained pulmonary delivery of sildenafil citrate. Spray dried hydrogel microparticles containing biodegradable sodium carboxymethyl cellulose, sodium alginate, and sodium hyaluronate polymers at variable concentrations were prepared. A design of experiment using the "Extreme Vertices Mixture" design was executed. The design was used to study the influence of polymer concentration and their interactions on the physicochemical properties of the formulations in terms of particle size, particle size distribution, product yield, entrapment efficiency, and in-vitro drug release. Selected formulations were also evaluated for swelling, biodegradation, moisture content, in-vitro aerodynamic performance, and cytotoxicity. In addition, a lung deposition and pharmacokinetic study was conducted in rats to study drug accumulation in lungs and blood after intratracheal administration of the spray dried inhalable hydrogel microparticles in comparison to orally administered Viagra®. The results demonstrated that formulated microparticles had a mean geometric particle size between 2 and 5 µm, entrapment efficiency of >80%, and yield ranging between 47 and 66% w/w. The in-vitro drug release profiles showed a sustained drug release of sildenafil citrate for over 24 h. The statistical design showed a significant influence of the microparticulate composition on the physicochemical properties. Furthermore, selected formulations were evaluated for their aerodynamic properties. The aerodynamic properties included fine particle fraction ranging between 24 and 30%, dose recovery percent of 68-8 5%, and average mass median aerodynamic diameter of 4.6-4.8 µm. The in-vivo pharmacokinetic study showed that inhaled spray dried hydrogel microparticles (M6) formulation had significantly higher lung/blood Cmax, AUC, extended half-life, and mean residence time in comparison to orally administered sildenafil citrate of the same dose. In conclusion, the formulated drug-loaded spray dried hydrogel microparticles showed promising in-vitro and in-vivo results for the pulmonary delivery of sildenafil citrate. The spray dried hydrogel microparticles formulation can be considered as a potential alternative of oral sildenafil citrate for treatment of PAH.


Subject(s)
Drug Carriers/chemistry , Familial Primary Pulmonary Hypertension/drug therapy , Powders/administration & dosage , Pulmonary Arterial Hypertension/drug therapy , Sildenafil Citrate/administration & dosage , Administration, Inhalation , Administration, Oral , Alginates/chemistry , Animals , Carboxymethylcellulose Sodium/chemistry , Delayed-Action Preparations/chemistry , Drug Compounding , Drug Liberation , Dry Powder Inhalers , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Lung/metabolism , Male , Mice , Microspheres , Particle Size , Powders/chemistry , Powders/therapeutic use , RAW 264.7 Cells , Rats , Sildenafil Citrate/chemistry , Sildenafil Citrate/therapeutic use , Surface Properties , Tissue Distribution
7.
AAPS PharmSciTech ; 20(5): 172, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31016473

ABSTRACT

The capabilities of principal component regression (PCR) and multiple linear regression (MLR) were evaluated to decipher and predict the impact of formulation and process parameters on the modeled metronidazole benzoate (MB)-ethyl cellulose (EC) microsponge (MBECM) properties. MBECM were prepared by a quasi-emulsion solvent diffusion method. A minimum experimentation was designed using Box-Behnken approach with one center point after initial screening experiments. Data was modeled by principal component analysis (PCA), PCR, and MLR. Two distinct groupings of developed MBECM was observed in initial qualitative PCA as a function of their respective formulation and processing parameters. Group A formulations with low dichloromethane, high PVA, and low stirring speed exhibited larger particle size, lower entrapment efficiency (EE), and lower actual drug content (ADC) than Group B formulations. Optimized quantitative PCR and MLR models demonstrated a linear dependence of particle size and quadratic dependence of EE and ADC on the studied formulation and process parameters. Interestingly, MLR models showed relatively better predictability of the selected MBECM formulation properties when compared with PCR. MBECM were amorphous in nature and spherical shaped. Carbopol® 940 NF based hydrogel of selected MBECM formulation exhibited a prolonged MB release than the commercial MB gel (Metrogyl®), showing no signs of necrosis in the goat mucosa. Thus, a properly designed minimum experimentation coupled with multivariate modeling generated a knowledge-rich target space, which enabled to understand and predict the performance of developed MBECM within a prescribed design space.


Subject(s)
Drug Compounding , Models, Theoretical , Acrylic Resins , Animals , Cellulose/analogs & derivatives , Cellulose/chemistry , Diffusion , Emulsions , Goats , Metronidazole/chemistry , Microscopy, Electron, Scanning , Particle Size , Principal Component Analysis
8.
Pharm Dev Technol ; 24(5): 550-559, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30175691

ABSTRACT

Low-order high-energy nifedipine (NIF) solid dispersions (SDs) were generated by melt solvent amorphization with polyethylene glycol (PEG) 1450 and hypromellose acetate succinate (HPMCAS-HF) to increase NIF solubility while achieving acceptable physical stability. HPMCAS-HF was used as a crystallization inhibitor. Individual formulation components, their physical mixtures (PMs), and SDs were characterized by differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). NIF solubility and percent crystallinity (PC) were determined at the initial time and after 5 days stored at 25 °C and 60% RH. FTIR indicated that hydrogen bonding was involved with the amorphization process. FTIR showed that NIF:HPMCAS-HF intermolecular interactions were weaker than NIF:PEG 1450 interactions. NIF:PEG 1450 SD solubilities were significantly higher than their PM counterparts (p < 0.0001). The solubilities of NIF:PEG 1450:HPMCAS-HF SDs were significantly higher than their corresponding NIF:PEG 1450 SDs (p < 0.0001-0.043). All the SD solubilities showed a statistically significant decrease (p < 0.0001) after storage for 5 days. SDs PC were statistically lower than their comparable PMs (p < 0.0001). The PCs of SDs with HPMCAS-HF were significantly lower than SDs not containing only PEG 1450. All SDs exhibited a significant increase in PC (p < 0.0001-0.0089) on storage. Thermogravimetric analysis results showed that HPMCAS-HF bound water at higher temperatures than PEG 1450 (p < 0.0001-0.0039). HPMCAS-HF slowed the crystallization process of SDs, although it did not completely inhibit NIF crystal growth.


Subject(s)
Calcium Channel Blockers/chemistry , Excipients/chemistry , Methylcellulose/analogs & derivatives , Nifedipine/chemistry , Polyethylene Glycols/chemistry , Crystallization , Drug Compounding , Drug Storage , Methylcellulose/chemistry , Powders , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry , X-Ray Diffraction
9.
Int J Pharm ; 548(1): 314-324, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29991451

ABSTRACT

Magnesium stearate (MgSt) is the most commonly used excipient for oral solid dosage forms, yet there is significant commercial physicochemical variability that can lead to variable performance of critical product attributes. Differential scanning calorimetry (DSC) is often used as a quality control tool to characterize MgSt, but little data is available regarding the physicochemical relevance for the DSC thermograms. The main aim of this study was to decipher MgSt's complex thermotropic behavior using DSC, thermogravimetric analysis, capillary melting point, polarized hot-stage microscopy, and temperature dependent small-angle X-ray scattering (SAXS) and assign physicochemical relevance to the DSC thermograms. Several DSC thermal transitions are irreversible after the first heating cycle of a heat-cool-heat-cool-heat cycle. Interestingly, after the first heat cycle, the complex cool-heat-cool-heat DSC thermograms were highly reproducible and exhibited 6 reversible exothermic-endothermic conjugate pairs. SAXS identified 5 distinct mesophases at different temperatures with Phase C' persisting to 250 °C. MgSt maintained molecular ordering beyond 276 °C and did not undergo a simple melting phenomena reported elsewhere. This research serves as a starting point to design heat-treatment strategies to create more uniform MgSt starting material.


Subject(s)
Excipients/chemistry , Stearic Acids/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Hot Temperature , Microscopy , Scattering, Small Angle , Thermogravimetry
10.
J Pharm Sci ; 107(10): 2635-2642, 2018 10.
Article in English | MEDLINE | ID: mdl-29909027

ABSTRACT

Dipalmitoylphosphatidylcholine (DPPC) demonstrated complex differential scanning calorimetry (DSC) thermal behavior. Transitions below 100°C showed variability in their thermotropic reversibility. An experimental design employing a DSC heat-cool-heat-cool-heat cycle and modulated DSC were used to gain insight into the DPPC's complex thermal nature. An annealing strategy was developed to reduce DPPC's thermotropic variability, moisture uptake rate, and rate variability. Samples annealed at 110°C for 5 min provided a reproducible, thermally reversible material. The annealed material also exhibited an 8-fold decrease in moisture sorption rate and a statistically significant (p = 0.0233) 100-fold decrease in water sorption rate variability compared to DPPC "as is." An optimized validated stability-indicating high performance liquid chromatography with evaporative light scattering detection method was developed and showed no change in DPPC chemical stability under the annealing treatment conditions.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning/methods , Chromatography, High Pressure Liquid/methods , Hot Temperature , Temperature , Thermodynamics
11.
AAPS PharmSciTech ; 18(6): 1925-1935, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27873181

ABSTRACT

Spray-dried ipratropium bromide (IPB) microspheres for oral inhalation were engineered using Quality by Design. The interrogation of material properties, process parameters, and critical product quality attributes interplay enabled rational product design. A 27-3 screening design exhibited the Maillard reaction between L-leucine (LL) and lactose at studied outlet temperatures (OT) >130°C. A response surface custom design was used in conjunction with multicriteria optimization to determine the operating design space to achieve inhalable microparticles. Statistically significant predictive models were developed for volume median diameter (p = 0.0001, adjusted R 2 = 0.9938), span (p = 0.0278, adjusted R 2 = 0.7912), yield (p = 0.0020, adjusted R 2 = 0.9320), and OT (p = 0.0082, adjusted R 2 = 0.8768). An independent verification batch confirmed the model's predictive capability. The prediction and actual values were in good agreement. Particle size and span were 3.32 ± 0.09 µm and 1.71 ± 0.18, which were 4.7 and 5.3% higher than the predicted values. The process yield was 50.3%, compared to the predicted value of 65.3%. The OT was 100°C versus the predicted value of 105°C. The label strength of IPB microparticles was 99.0 to 105.9% w/w suggesting that enrichment occurred during the spray-drying process. The present study can be utilized to initiate the design of the first commercial IPB dry powder inhaler.


Subject(s)
Bronchodilator Agents/chemical synthesis , Chemical Engineering/methods , Ipratropium/chemical synthesis , Administration, Inhalation , Bronchodilator Agents/administration & dosage , Desiccation , Dry Powder Inhalers/methods , Ipratropium/administration & dosage , Lactose/administration & dosage , Lactose/chemical synthesis , Particle Size , Powders , Temperature , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...