Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 306: 208-214, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35301040

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a major public health problem. The retina is a relevant site to indirectly study brain functioning. Alterations in retinal processing were demonstrated in MDD with the pattern electroretinogram (PERG). Here, the relevance of signal processing and machine learning tools applied on PERG was studied. METHODS: PERG - whose stimulation is reversible checkerboards - was performed according to the International Society for Clinical Electrophysiology of Vision (ISCEV) standards in 24 MDD patients and 29 controls at the inclusion. PERG was recorded every 4 weeks for 3 months in patients. Amplitude and implicit time of P50 and N95 were evaluated. Then, time/frequency features were extracted from the PERG time series based on wavelet analysis. A statistical model has been learned in this feature space and a metric aiming at quantifying the state of the MDD patient has been derived, based on minimum covariance determinant (MCD) mahalanobis distance. RESULTS: MDD patients showed significant increase in P50 and N95 implicit time (p = 0,006 and p = 0,0004, respectively, Mann-Whitney U test) at the inclusion. The proposed metric extracted from the raw PERG provided discrimination between patients and controls at the inclusion (p = 0,0001). At the end of the follow-up at week 12, the difference between the metrics extracted on controls and patients was not significant (p = 0,07), reflecting the efficacy of the treatment. CONCLUSIONS: Signal processing and machine learning tools applied on PERG could help clinical decision in the diagnosis and the follow-up of MDD in measuring treatment response.


Subject(s)
Depressive Disorder, Major , Adult , Depression , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/therapy , Electroretinography , Humans , Machine Learning , Retina/diagnostic imaging , Retinal Ganglion Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL