Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 108(2): 375-381, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37578371

ABSTRACT

Sterol demethylation inhibitor (DMI) fungicides continue to be essential components for the control of brown rot of peach caused by Monilinia fructicola in the United States and worldwide. In the southeastern United States, resistance to DMIs had been associated with overexpression of the cytochrome P450 14α-demethylase gene MfCYP51 as well as the genetic element Mona, a 65 bp in length nucleotide sequence located upstream of MfCYP51 in resistant isolates. About 20 years after the first survey, we reevaluated sensitivity of M. fructicola from South Carolina and Georgia to propiconazole and also evaluated isolates from Alabama for the first time. A total of 238 M. fructicola isolates were collected from various commercial and two experimental orchards, and sensitivity to propiconazole was determined based on a discriminatory dose of 0.3 µg/ml. Results indicated 16.2, 89.2, and 72.4% of isolates from Alabama, Georgia, and South Carolina, respectively, were resistant to propiconazole. The detection of resistance in Alabama is the first report for the state. All resistant isolates contained Mona, but it was absent from most sensitive isolates. It was unclear if the resistance frequency had increased in South Carolina and Georgia. However, the resistance levels (as assessed by the isolate frequency in discriminatory dose-based relative growth categories) did not change notably, and no evidence of other resistance genotypes was found. Analysis of the upstream MfCYP51 gene region in the resistant isolate CF010 revealed an insertion sequence described for the first time in this report. Our study suggests that current fungicide spray programs have been effective against increasing resistance levels in populations of M. fructicola and suppressing development of new resistant genotypes of the pathogen.


Subject(s)
Ascomycota , Fungicides, Industrial , Triazoles , United States , Fungicides, Industrial/pharmacology , Ascomycota/genetics , Georgia
2.
Pestic Biochem Physiol ; 197: 105642, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072561

ABSTRACT

Methyl benzimidazole carbamate (MBC) fungicides were once widely used for brown rot (Monilinia fructicola) control of peach (Prunus persica (L.) Batsch) in the southeastern US, but their use was substantially reduced and often eliminated due to widespread resistance. In this study, 233 M. fructicola isolates were collected from major peach production areas in Alabama, Georgia, and South Carolina, and sensitivity to thiophanate-methyl was examined. Isolates were also collected from one organic and two experimental peach orchards. A discriminatory dose of 1 µg/ml was used to distinguish sensitive (S) and moderately sensitive (S-LR) isolates from low resistant phenotypes, while 50 and 500 µg/ml thiophanate-methyl concentrations were used to determine high resistant (HR) phenotypes. Sequence analyses were performed to identify mutations in the ß-tubulin target gene and detached fruit assays were performed to determine the efficacy of a commercial product against isolates representing each phenotype. Results indicated 55.7%, 63.5%, and 75.9% of isolates from Alabama, Georgia, and South Carolina, respectively, were S to thiophanate-methyl; 44.3%, 36.5%, and 21.4% were S-LR; no isolates were LR; and only 3 isolates (1.3%) from South Carolina were HR. No mutations in S or S-LR isolates were found, but HR isolates revealed the E198A mutation, an amino acid change of glutamic acid to alanine conferring high resistance. The high label rate of a commercial product containing thiophanate-methyl controlled brown rot caused by S and S-LR isolates in detached fruit studies but was ineffective against HR isolates. The combinations of thiophanate-methyl with azoxystrobin or isofetamid, when mixed together and applied in an experimental orchard 14 days preharvest, significantly reduced brown rot incidence on pre and postharvest commercially ripe fruit and efficacy was comparable to that of a grower standard fungicide. These results indicate that thiophanate-methyl may again be useful to peach growers in the southeastern US for brown rot and fungicide resistance management.


Subject(s)
Fungicides, Industrial , Prunus persica , Thiophanate/pharmacology , Fungicides, Industrial/pharmacology , Southeastern United States
3.
Plant Dis ; 107(2): 326-334, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35771113

ABSTRACT

Peach is an important specialty fruit crop in the United States, and phony peach disease (PPD), caused by Xylella fastidiosa subsp. multiplex, has been a major cause of yield loss since it was first observed in 1885. Under a federal eradication program, surveys of PPD were conducted from 1929 to 1972, when the program was terminated. No surveys have been conducted in approximately 50 years; therefore, the current prevalence of PPD in the United States is unknown, especially in the Southeast, where damage was previously most severe. To ascertain the status of PPD, we surveyed orchards in Alabama, Florida, Georgia, and South Carolina from June to August 2020 and, except for South Carolina and northern Georgia, PPD was prevalent. Trees in 17 orchards were subjected to confirmation of X. fastidiosa using the AmplifyRP XRT+ for X. fastidiosa to corroborate our visual assessments; based on these tests, PPD incidence in the orchards ranged from 0 to 30.5%. Ancillary written surveys of relative PPD presence and prevalence were sent to fruit pathologists from universities in 20 states where PPD was historically reported. Only 35.0% of respondents reported that PPD either currently or recently occurred in their state and, of these, three reported PPD to be of significant concern. The results of the physical and written surveys indicate that PPD remains prevalent mainly in the southeastern region of the United States but, in other states where previously reported, it is either not present or has very low prevalence when compared with historical accounts of the disease.


Subject(s)
Prunus persica , Xylella , United States , Prevalence , South Carolina
4.
J Econ Entomol ; 114(3): 1234-1241, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33885768

ABSTRACT

Kiwifruit is a new emerging crop for the southeastern United States that requires cross-pollination to set fruit. However, the pollination requirements for varieties grown in the southeastern United States are unknown. Through insect surveys and a bagging experiment, we assessed the pollination requirements of two female kiwifruit cultivars (Actinidia chinensis var. chinensis 'AU Golden Sunshine' and A. chinensis var. chinensis 'AU Gulf Coast Gold'). For each, fruit quantity (fruit set) and fruit quality (weight, size, seed count, firmness, soluble solid content, and dry matter) were compared among three pollination treatments (wind, insect, and artificial pollination). Low abundances of insects were observed visiting female flowers of both kiwifruit cultivars, and therefore likely minimally influenced kiwifruit pollination. Artificial pollination resulted in the greatest percentages of fruit set and marketable fruits, followed by insect and wind pollination. Artificial pollination resulted in fruits that were greater in weight, size, and contained more seeds, than insect- and wind-pollinated fruits. Firmness and soluble solid content did not vary greatly between pollination treatments, yet were greater in 'AU Golden Sunshine'. Dry matter content did not vary greatly between pollination treatments or between each cultivar. To maximize yields and optimize fruit quality, these results suggest that kiwifruit producers should place more effort into artificial pollination compared to wind and insect pollination. Future research should explore the use of managed bees (e.g., honey bees and bumble bees) within kiwifruit orchards to determine ways to utilize them as a secondary source for pollination needs.


Subject(s)
Actinidia , Actinidiaceae , Ericales , Animals , Bees , Fruit , Gold , Pollination , Southeastern United States
5.
Biodivers Data J ; (7): e30124, 2019.
Article in English | MEDLINE | ID: mdl-30820161

ABSTRACT

BACKGROUND: A parasitoid wasp, Trissolcus solocis Johnson, was recorded parasitising eggs of the invasive stink bug Halyomorpha halys (Stål), in the United States. This is the first record of this species parasitising eggs of H. halys. NEW INFORMATION: First record of Trissolcus solocis parasitising Halyomorpha halys eggs in the United States and first record of T. solocis in Alabama.

SELECTION OF CITATIONS
SEARCH DETAIL
...