Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 12(3): 954-65, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25665128

ABSTRACT

Cyclodextrins (CDs) are a well-known class of supermolecules that have been widely used to protect drugs against conjugation and metabolic inactivation as well as to enhance the aqueous solubility and hence to ameliorate the oral bioavailability of sparingly soluble drug molecules. The hepatoprotectant drug silibinin can be incorporated into CDs, and here we elucidate the interaction between the drug and the host at the molecular level. The complexation product of silibinin with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) is characterized by Differential Scanning Calorimetry, mass spectrometry, solid and liquid high-resolution NMR spectroscopy. The chemical shift changes using (13)C CP/MAS on the complexing of the guest with the host provided significant information on the molecular interactions, and they were in agreement with the 2D NOESY results. These results point out that in both solid and liquid forms, the drug is engulfed and interacts with HP-ß-CD in identical manner. Molecular dynamics calculations have been performed to examine the thermodynamic characteristics associated with the silibinin-HP-ß-CD interactions and to study the stability of the complex. To approximate the physiological conditions, the aqueous solubility and dissolution characteristics of the complex at pH states simulating those of the upper gastrointestinal tract have been applied. To evaluate the antiproliferative activity of silibinin-HP-ß-CD complex comparatively to silibinin in MCF-7 human cancer cells, MTT assays have been performed.


Subject(s)
Silymarin/administration & dosage , Silymarin/chemistry , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Biopharmaceutics , Biophysical Phenomena , Cell Proliferation/drug effects , Drug Interactions , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Protective Agents/administration & dosage , Protective Agents/chemistry , Silybin , Solubility
2.
J Phys Chem B ; 114(3): 1294-300, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20043648

ABSTRACT

The structural modifications of the amino acid DL-Norvaline have been studied using differential scanning calorimetry (DSC) and Raman spectroscopy. DSC results showed that this amino acid undergoes two solid-solid phase transitions at -116.9 and -76.1 degrees C in the temperature range -130 to +300 degrees C. Raman spectroscopy was applied to complement DSC results. The combination of the two methodologies point out that the observed phase transitions correspond to an increment of disordering in the aliphatic side chain of amino acid, an augmentation of the rotational motion of the amino group and a decrease of the strength of the intramolecular hydrogen bonding of the initial dimers at low temperatures. The observed phase transitions of DL-norvaline are compared with those found in DL-norleucine.


Subject(s)
Molecular Conformation , Valine/analogs & derivatives , Calorimetry, Differential Scanning , Models, Molecular , Norleucine/chemistry , Spectrum Analysis, Raman , Temperature , Valine/chemistry
3.
Biophys J ; 96(6): 2227-36, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19289049

ABSTRACT

A cross-polarization (CP) (31)P NMR broadline simulation methodology was developed for studying the effects of drugs in phospholipids bilayers. Based on seven-parameter fittings, this methodology provided information concerning the conformational changes and dynamics effects of losartan in the polar region of the dipalmitoylphosphatidylcholine bilayers. The test molecule for this study was losartan, an antihypertensive drug known to exert its effect on AT(1) transmembrane receptors. The results were complemented and compared with those of differential scanning calorimetry, solid-state (13)C NMR spectroscopy, Raman spectroscopy, and electron spin resonance. More specifically, these physical chemical methodologies indicated that the amphipathic losartan molecule interacts with the hydrophilic-head zone of the lipid bilayers. The CP (31)P NMR broadline simulations showed that the lipid molecules in the bilayers containing losartan displayed greater collective tilt compared to the tilt displayed by the load-free bilayers, indicating improved packing. The Raman results displayed a decrease in the trans/gauche ratio and increased intermolecular interactions of the acyl chains in the liquid crystalline phase. Additional evidence, suggesting that losartan possibly anchors in the realm of the headgroup, was derived from upfield shift of the average chemical shift sigma(iso) of the (31)P signal in the presence of losartan and from shift of the observed peak at 715 cm(-1) attributed to C-N stretching in the Raman spectra.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Losartan/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Angiotensin II Type 1 Receptor Blockers/chemistry , Anisotropy , Calorimetry, Differential Scanning , Carbon Isotopes , Computer Simulation , Electron Spin Resonance Spectroscopy , Models, Chemical , Phosphorus Isotopes , Spectrum Analysis, Raman , Temperature
4.
J Colloid Interface Sci ; 330(1): 67-72, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18977495

ABSTRACT

The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study. With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E(18)B(10)-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B(20)E(610)-SDS, B(12)E(227)B(12)-SDS, E(40)B(10)E(40)-SDS, E(19)P(43)E(19)-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc(*)) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E(40)B(10)E(40)-SDS and E(19)P(43)E(19)-SDS, but positive deviations for E(18)B(10)-SDS. Ultrasonic studies performed for the E(19)P(43)E(19)-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates.

5.
Biomacromolecules ; 9(5): 1366-71, 2008 May.
Article in English | MEDLINE | ID: mdl-18393523

ABSTRACT

The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polymer aggregates were observed in the case of E 18B 10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E 18B 10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E 18B 10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.


Subject(s)
Epoxy Compounds/chemistry , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Animals , Gels , Micelles , Phase Transition , Protein Conformation , Solutions , Water
6.
Langmuir ; 24(8): 3767-72, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18315019

ABSTRACT

The introduction of ionic single-tailed surfactants to aqueous solutions of EO(18)BO(10) [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer-surfactant complexes (number and size decrease in high surfactant concentrations).

7.
J Colloid Interface Sci ; 320(1): 70-3, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18206903

ABSTRACT

Critical micelle concentrations (cmc) of aqueous solutions of poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) were determined at several temperatures by surface tensiometry. Below the lower critical solution temperature (LCST), the low Delta mic H 0 determined can be assigned to the PMMA block being tightly coiled in the dispersed molecular state, so that the unfavorable interactions of hydrophobic entities with water are minimized. Above the LCST the cmc value was found to increase; an anomalous behavior that can be directly related to the micelle-globule transition of the hydrophilic block. Interestingly, above the LCST the surface tension of relatively concentrated solutions was found to depend weakly on temperature not following the usual strong decrease with temperature expected for aqueous solutions.

8.
Biochim Biophys Acta ; 1778(1): 113-24, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17964279

ABSTRACT

Existing evidence points out that the biological activity of beta-Ala-Tyr may in part related to its interactions with the cell membranes. For comparative reasons the effects of Glu were also examined using identical techniques and conditions. In order to examine their thermal and dynamic effects on membrane bilayers a combination of DSC, Raman and solid state NMR spectroscopy on DPPC/water model membranes were applied and the results were compared. DSC data showed that Glu perturbs to a greater degree the model membrane compared to beta-Ala-Tyr. Thus, alteration of the phase transition temperature and half width of the peaks, abolishment of the pretransition and influence on the enthalpy of the phase transition were more pronounced in the Glu loaded bilayers. Raman spectroscopy showed that incorporation of Glu in DPPC/water bilayers increased the order in the bilayers in contrast to the effect of the dipeptide. Several structural and dynamical properties of the DPPC multilamellar bilayers with and without the dipeptide or Glu were compared using high resolution C-13 MAS (Magic Angle Spinning) spectra and spectral simulations of inhomogeneously broadened, stationary P-31 NMR lineshapes measured under CP (Cross-polarization) conditions. These methods revealed that the aminoacid Glu binds in the close realm of the phosphate in the hydrophilic headgroup of DPPC while beta-Ala-Tyr is located more deeply inside the hydrophobic zone of the bilayer. The P-31 NMR simulations indicated restricted fast rotary motion of the phospholipids about their long axes in the organized bilayer structure. Finally, by the applied methodologies it is concluded that the two molecules under study exert dissimilar thermal and dynamic effects on lipid bilayers, the Glu improving significantly the packing of the lipids in contrast to the smaller and opposite effect of the dipeptide.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/metabolism , Dipeptides/metabolism , Glutamic Acid/metabolism , Lipid Bilayers/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning , Carbon Isotopes , Computer Simulation , Dipeptides/chemistry , Glutamic Acid/chemistry , Magnetic Resonance Spectroscopy , Phase Transition , Spectrum Analysis, Raman , Temperature
9.
Int J Pharm ; 318(1-2): 118-23, 2006 Aug 02.
Article in English | MEDLINE | ID: mdl-16675175

ABSTRACT

The interaction between PAMAM (polyamidoamine) dendrimer generation 4 (G4) and 3,5 (G3,5) with model lipid membranes composed of dipalmytoylphosphatidylcholine (DPPC) has been investigated. Differential scanning calorimetry (DSC) and Raman spectroscopy were applied to assess the thermodynamic changes caused by PAMAM G4 and G3,5 and to specify the exact location of these dendrimers into the DPPC lipid bilayer. DSC thermograms indicated that the maximum percentages of PAMAM G4 and of G3,5 that can be incorporated in the DPPC membrane without deranging its integrity were 5% and 3%, respectively. The Raman intensity ratios I(2935/2880), I(2844/2880) and I(1090/1130) cm(-1) showed the degree of the fluidity of the lipid bilayer, while the absorption at 715 cm(-1) showed a strong interaction of PAMAM G4 and G3,5 with the polar head group of phospholipid. The results showed that the incorporation of the PAMAM G4 and G3,5 dendrimers in DPPC bilayers causes a concentration dependent increase of the membrane fluidity and that the bilayers interact strongly with both the lipophilic part and the polar head group of the phospholipids. Due to the current weak knowledge relating to the mechanism(s) under which dendrimers interact with lipidic membranes and transport through cells, these results may justify the tendency of dendrimers to disrupt biological membranes. The findings from this study could also prove helpful to rationally design new liposomal drug carriers for bioactive molecules by combining dendrimeric and liposomal technologies.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Membranes, Artificial , Polyamines/chemistry , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Physical , Dendrimers , Drug Carriers , Lipid Bilayers , Liposomes , Phosphatidylcholines/chemistry , Spectrum Analysis, Raman , Temperature
10.
Chem Phys Lipids ; 135(1): 83-92, 2005 May.
Article in English | MEDLINE | ID: mdl-15854627

ABSTRACT

Various techniques, namely differential scanning calorimetry, optical microscopy, dielectric and Raman spectroscopy, all covering a wide range of temperatures, were used to study the thermodynamically stable phases and molecular mobility of crystals of long chain 2-amino alcohols. The results showed that two different crystal forms are present in each sample. The temperature behaviour of the phases is studied in details.


Subject(s)
Amino Alcohols/analysis , Amino Alcohols/chemistry , Crystallization/methods , Isomerism , Molecular Conformation , Phase Transition , Temperature , Transition Temperature
11.
Phys Chem Chem Phys ; 7(7): 1457-63, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-19787968

ABSTRACT

The chain-length-dependent conformational transformation and the melting behaviour of triblock compounds alpha-octyl-omega-octyloxyoligo(oxyethylene)s, H(CH2)8(OCH2CH2)mO(CH2)8H (abbreviated as C8EmC8) (m = 1-8), have been studied by infrared spectroscopy and differential scanning calorimetry. The compounds with m = 1-5 assume the all-trans planar form (gamma-form) in the solid state, while those with m = 7 and 8 assume the planar/ helical/planar form with conformational defects in the alkyl chain (beta'-form). Conformational polymorphism was observed for C8E6C8: the gamma-form for the annealed solid and the planar/helical/planar form without conformational defects (beta-form) for the unannealed solid. The conformational transformation from the planar form into the planar/helical/planar form takes place at a length of the oligo(oxyethylene) chain m = 6. This result for C8EmC8 and a similar conformational transformation for C6EmC6 at m = 5 (previous work) demonstrate that the conformation of the CnEmCn triblock compounds in the solid state is determined by intramolecular conformational restoring force in the central oligo(oxyethylene) block, intermolecular dipole-dipole interaction of the C-O bonds and intermolecular packing force in the end alkyl blocks. The melting points of the gamma-form solid of C8EmC8 are much lower than the melting points of n-alkanes with similar molecular masses. The observed thermodynamic quantities show that the planar structure of the oligo(oxyethylene) chain is stabilized by the force of the magnitude that maintains the rotator phase of n-alkanes. For the beta'-form solid of C8EmC8, the alkyl blocks, which are partially noncrystalline, and the oligo(oxyethylene) block melt together at the melting point, unlike the beta-form solid of C6EmC6, for which the melting of the alkyl blocks takes place before the melting of the oligo(oxyethylene) block. The beta-form solid of C8E6C8 (unannealed) melts via the gamma-form solid.

SELECTION OF CITATIONS
SEARCH DETAIL