Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37504550

ABSTRACT

BACKGROUND: Left ventricular global longitudinal strain (LV GLS) is a superior predictor of adverse cardiac events in patients with myocardial infarction and heart failure. We investigated the ability of morphological features of infarcted myocardium to detect acute left ventricular (LV) dysfunction and predict LV functional recovery after three months in patients with acute ST-segment elevation myocardial infarction (STEMI). METHODS: Sixty-six STEMI patients were included in the C-reactive protein (CRP) apheresis in Acute Myocardial Infarction Study (CAMI-1). LV ejection fraction (LVEF), LV GLS, LV global circumferential strain (LV GCS), infarct size (IS), area-at-risk (AAR), and myocardial salvage index (MSI) were assessed by CMR 5 ± 3 days (baseline) and 12 ± 2 weeks after (follow-up) the diagnosis of first acute STEMI. RESULTS: Significant changes in myocardial injury parameters were identified after 12 weeks of STEMI diagnosis. IS decreased from 23.59 ± 11.69% at baseline to 18.29 ± 8.32% at follow-up (p < 0.001). AAR and MVO also significantly reduced after 12 weeks. At baseline, there were reasonably moderate correlations between IS and LVEF (r = -0.479, p < 0.001), LV GLS (r = 0.441, p < 0.001) and LV GCS (r = 0.396, p = 0.001) as well as between AAR and LVEF (r = -0.430, p = 0.003), LV GLS (r = 0.501, p < 0.001) and weak with LV GCS (r = 0.342, p = 0.020). At follow-up, only MSI and change in LV GCS over time showed a weak but significant correlation (r = -0.347, p = 0.021). Patients with larger AAR at baseline improved more in LVEF (p = 0.019) and LV GLS (p = 0.020) but not in LV GCS. CONCLUSION: The CMR tissue characteristics of myocardial injury correlate with the magnitude of LV dysfunction during the acute stage of STEMI. AAR predicts improvement in LVEF and LV GLS, while MSI is a sensitive marker of LV GCS recovery at three months follow-up after STEMI.

2.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35334543

ABSTRACT

Background and Objectives: To compare the accuracy of multimodality imaging (myocardial perfusion imaging with single-photon emission computed tomography (SPECT MPI), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), and cardiovascular magnetic resonance (CMR) in the evaluation of left ventricle (LV) myocardial viability for the patients with the myocardial infarction (MI) and symptomatic heart failure (HF). Materials and Methods: 31 consecutive patients were included in the study prospectively, with a history of previous myocardial infarction, symptomatic HF (NYHA) functional class II or above, reduced ejection fraction (EF) ≤ 40%. All patients had confirmed atherosclerotic coronary artery disease (CAD), but conflicting opinions regarding the need for percutaneous intervention due to the suspected myocardial scar tissue. All patients underwent transthoracic echocardiography (TTE), SPECT MPI, 18F-FDG PET, and CMR with late gadolinium enhancement (LGE) examinations. Quantification of myocardial viability was assessed in a 17-segment model. All segments that were described as non-viable (score 4) by CMR LGE and PET were compared. The difference of score between CMR and PET we named reversibility score. According to this reversibility score, patients were divided into two groups: Group 1, reversibility score > 10 (viable myocardium with a chance of functional recovery after revascularization); Group 2, reversibility score ≤ 10 (less viable myocardium when revascularisation remains questionable). Results: 527 segments were compared in total. A significant difference in scores 1, 2, 3 group, and score 4 group was revealed between different modalities. CMR identified "non-viable" myocardium in 28.1% of segments across all groups, significantly different than SPECT in 11.8% PET in 6.5% Group 1 (viable myocardium group) patients had significantly higher physical tolerance (6 MWT (m) 3892 ± 94.5 vs. 301.4 ± 48.2), less dilated LV (LVEDD (mm) (TTE) 53.2 ± 7.9 vs. 63.4 ± 8.9; MM (g) (TTE) 239.5 ± 85.9 vs. 276.3 ± 62.7; LVEDD (mm) (CMR) 61.7 ± 8.1 vs. 69.0 ± 6.1; LVEDDi (mm/m2) (CMR) 29.8 ± 3.7 vs. 35.2 ± 3.1), significantly better parameters of the right heart (RV diameter (mm) (TTE) 33.4 ± 6.9 vs. 38.5 ± 5.0; TAPSE (mm) (TTE) 18.7 ± 2.0 vs. 15.2 ± 2.0), better LV SENC function (LV GLS (CMR) −14.3 ± 2.1 vs. 11.4 ± 2.9; LV GCS (CMR) −17.2 ± 4.6 vs. 12.7 ± 2.6), smaller size of involved myocardium (infarct size (%) (CMR) 24.5 ± 9.6 vs. 34.8 ± 11.1). Good correlations were found with several variables (LVEDD (CMR), LV EF (CMR), LV GCS (CMR)) with a coefficient of determination (R2) of 0.72. According to the cut-off values (LVEDV (CMR) > 330 mL, infarct size (CMR) > 26%, and LV GCS (CMR) < −15.8), we performed prediction of non-viable myocardium (reversibility score < 10) with the overall percentage of 80.6 (Nagelkerke R2 0.57). Conclusions: LGE CMR reveals a significantly higher number of scars, and the FDG PET appears to be more optimistic in the functional recovery prediction. Moreover, using exact imaging parameters (LVEDV (CMR) > 330 mL, infarct size (CMR) > 26% and LV GCS (CMR) < −15.8) may increase sensitivity and specificity of LGE CMR for evaluation of non-viable myocardium and lead to a better clinical solution (revascularization vs. medical treatment) even when viability is low in LGE CMR, and FDG PET is not performed.


Subject(s)
Heart Failure , Myocardial Infarction , Contrast Media , Gadolinium , Heart Failure/diagnostic imaging , Heart Failure/pathology , Humans , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL
...