Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 31(2): 351-363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182926

ABSTRACT

UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.


Subject(s)
Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/metabolism , Catalysis , Ubiquitination , Calmodulin-Binding Proteins/metabolism
2.
Nat Chem Biol ; 18(8): 802-811, 2022 08.
Article in English | MEDLINE | ID: mdl-35896829

ABSTRACT

The ubiquitin system has become synonymous with the modification of lysine residues. However, the substrate scope and diversity of the conjugation machinery have been underappreciated, bringing us to an epoch in ubiquitin system research. The striking discoveries of metazoan enzymes dedicated toward serine and threonine ubiquitination have revealed the important role of nonlysine ubiquitination in endoplasmic reticulum-associated degradation, immune signaling and neuronal processes, while reports of nonproteinaceous substrates have extended ubiquitination beyond the proteome. Bacterial effectors that bypass the canonical ubiquitination machinery and form unprecedented linkage chemistry further redefine long-standing dogma. While chemical biology approaches have advanced our understanding of the canonical ubiquitin system, further study of noncanonical ubiquitination has been hampered by a lack of suitable tools. This Perspective aims to consolidate and contextualize recent discoveries and to propose potential applications of chemical biology, which will be instrumental in unraveling this new frontier of ubiquitin research.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Lysine , Animals , Lysine/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-35764390

ABSTRACT

Ubiquitylation enzymes are involved in all aspects of eukaryotic biology and are frequently disrupted in disease. One example is the E3 ubiquitin ligase RNF12/RLIM, which is mutated in the developmental disorder Tønne-Kalscheuer syndrome (TOKAS). RNF12 TOKAS variants largely disrupt catalytic E3 ubiquitin ligase activity, which presents a pressing need to develop approaches to assess the impact of variants on RNF12 activity in patients. Here, we use photocrosslinking activity-based probes (photoABPs) to monitor RNF12 RING E3 ubiquitin ligase activity in normal and pathogenic contexts. We demonstrate that photoABPs undergo UV-induced labelling of RNF12 that is consistent with its RING E3 ligase activity. Furthermore, photoABPs robustly report the impact of RNF12 TOKAS variants on E3 activity, including variants within the RING domain and distal non-RING regulatory elements. Finally, we show that this technology can be rapidly deployed in human pluripotent stem cells. In summary, photoABPs are versatile tools that can directly identify disruptions to RING E3 ubiquitin ligase activity in human disease, thereby providing new insight into pathogenic mechanisms.


Subject(s)
Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Neural Regen Res ; 17(11): 2347-2350, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35535869

ABSTRACT

The degeneration of nerve fibres following injury was first described by Augustus Waller over 170 years ago. Initially assumed to be a passive process, it is now evident that axons respond to insult via regulated cellular signaling events resulting in their programmed degeneration. Pro-survival and pro-degenerative factors have been identified and their regulatory mechanisms are beginning to emerge. The ubiquitin system has been implicated in the pro-degenerative process and a key component is the ubiquitin E3 ligase MYCBP2 (also known as PHR1). Ubiquitin E3 ligases are tasked with the transfer of the small protein modifier ubiquitin to substrates and consist of hundreds of members. They can be classified as single subunit systems or as multi-subunit complexes. Their catalytic domains can also be assigned to three general architectures. Hints that MYCBP2 might not conform to these established formats came to light and it is now clear from biochemical and structural studies that MYCBP2 is indeed an outlier in terms of its modus operandi. Furthermore, the unconventional way in which MYCBP2 transfers ubiquitin to substrates has been linked to neurodevelopmental and pro-degenerative function. Herein, we will summarize these research developments relating to the unusual features of MYCBP2 and postulate therapeutic strategies that prevent Wallerian degeneration. These have exciting potential for providing relief from pathological neuropathies and neurodegenerative diseases.

5.
J Mol Biol ; 434(8): 167524, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35248542

ABSTRACT

A general approach for the rapid and selective inhibition of enzymes in cells using a common tool compound would be of great value for research and therapeutic development. We previously reported a chemogenetic strategy that addresses this challenge for kinases, relying on bioorthogonal tethering of a pan inhibitor to a target kinase through a genetically encoded non-canonical amino acid. However, pan inhibitors are not available for many enzyme classes. Here, we expand the scope of the chemogenetic strategy to cysteine-dependent enzymes by bioorthogonal tethering of electrophilic warheads. For proof of concept, selective inhibition of two E2 ubiquitin-conjugating enzymes, UBE2L3 and UBE2D1, was demonstrated in biochemical assays. Further development and optimization of this approach should enable its use in cells as well as with other cysteine-dependent enzymes, facilitating the investigation of their cellular function and validation as therapeutic targets.


Subject(s)
Cysteine , Ubiquitin-Conjugating Enzymes , Cysteine/chemistry , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/genetics
6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33479176

ABSTRACT

The reversibility of ubiquitination by the action of deubiquitinating enzymes (DUBs) serves as an important regulatory layer within the ubiquitin system. Approximately 100 DUBs are encoded by the human genome, and many have been implicated with pathologies, including neurodegeneration and cancer. Non-lysine ubiquitination is chemically distinct, and its physiological importance is emerging. Here, we couple chemically and chemoenzymatically synthesized ubiquitinated lysine and threonine model substrates to a mass spectrometry-based DUB assay. Using this platform, we profile two-thirds of known catalytically active DUBs for threonine esterase and lysine isopeptidase activity and find that most DUBs demonstrate dual selectivity. However, with two anomalous exceptions, the ovarian tumor domain DUB class demonstrates specific (iso)peptidase activity. Strikingly, we find the Machado-Joseph disease (MJD) class to be unappreciated non-lysine DUBs with highly specific ubiquitin esterase activity rivaling the efficiency of the most active isopeptidases. Esterase activity is dependent on the canonical catalytic triad, but proximal hydrophobic residues appear to be general determinants of non-lysine activity. Our findings also suggest that ubiquitin esters have appreciable cellular stability and that non-lysine ubiquitination is an integral component of the ubiquitin system. Its regulatory sophistication is likely to rival that of canonical ubiquitination.


Subject(s)
Deubiquitinating Enzymes/genetics , Esterases/genetics , Machado-Joseph Disease/genetics , Ubiquitin/genetics , Amino Acids/genetics , Deubiquitinating Enzymes/isolation & purification , Humans , Lysine/genetics , Machado-Joseph Disease/enzymology , Machado-Joseph Disease/pathology , Mass Spectrometry , Protein Processing, Post-Translational/genetics , Ubiquitination/genetics
7.
Nat Chem Biol ; 16(11): 1227-1236, 2020 11.
Article in English | MEDLINE | ID: mdl-32747811

ABSTRACT

MYCBP2 is a ubiquitin (Ub) E3 ligase (E3) that is essential for neurodevelopment and regulates axon maintenance. MYCBP2 transfers Ub to nonlysine substrates via a newly discovered RING-Cys-Relay (RCR) mechanism, where Ub is relayed from an upstream cysteine to a downstream substrate esterification site. The molecular bases for E2-E3 Ub transfer and Ub relay are unknown. Whether these activities are linked to the neural phenotypes is also unclear. We describe the crystal structure of a covalently trapped E2~Ub:MYCBP2 transfer intermediate revealing key structural rearrangements upon E2-E3 Ub transfer and Ub relay. Our data suggest that transfer to the dynamic upstream cysteine, whilst mitigating lysine activity, requires a closed-like E2~Ub conjugate with tempered reactivity, and Ub relay is facilitated by a helix-coil transition. Furthermore, neurodevelopmental defects and delayed injury-induced degeneration in RCR-defective knock-in mice suggest its requirement, and that of substrate esterification activity, for normal neural development and programmed axon degeneration.


Subject(s)
Axons/metabolism , Cysteine/metabolism , RING Finger Domains , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding Sites , Female , Gene Knock-In Techniques , Humans , Lysine/metabolism , Mice , Mice, Inbred C57BL/embryology , Mice, Transgenic , Models, Molecular , Molecular Conformation , Protein Binding , Protein Conformation , Signal Transduction , Structure-Activity Relationship , Ubiquitination
8.
Cell Chem Biol ; 27(1): 74-82.e6, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31859248

ABSTRACT

Activity-based protein profiling is an invaluable technique for studying enzyme biology and facilitating the development of therapeutics. Ubiquitin E3 ligases (E3s) are one of the largest enzyme families and regulate a host of (patho)physiological processes. The largest subtype are the RING E3s of which there are >600 members. RING E3s have adaptor-like activity that can be subject to diverse regulatory mechanisms and have become attractive drug targets. Activity-based probes (ABPs) for measuring RING E3 activity do not exist. Here we re-engineer ubiquitin-charged E2 conjugating enzymes to produce photocrosslinking ABPs. We demonstrate activity-dependent profiling of two divergent cancer-associated RING E3s, RNF4 and c-Cbl, in response to their native activation signals. We also demonstrate profiling of endogenous RING E3 ligase activation in response to epidermal growth factor (EGF) stimulation. These photocrosslinking ABPs should advance E3 ligase research and the development of selective modulators against this important class of enzymes.


Subject(s)
Benzophenones/chemistry , Cross-Linking Reagents/chemistry , Phenylalanine/analogs & derivatives , Ubiquitin-Protein Ligases/metabolism , Benzophenones/metabolism , Cross-Linking Reagents/metabolism , Humans , Models, Molecular , Molecular Conformation , Phenylalanine/chemistry , Phenylalanine/metabolism , Photochemical Processes , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry
9.
Nature ; 556(7701): 381-385, 2018 04.
Article in English | MEDLINE | ID: mdl-29643511

ABSTRACT

Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub) 1 . Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates 2 . By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate3,4. Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism 5 . Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Biocatalysis , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Cysteine/metabolism , Esterification , HEK293 Cells , Humans , Lysine/metabolism , Models, Molecular , Protein Domains , Proteomics , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Ubiquitin/metabolism , Ubiquitination
10.
Mol Cell ; 70(1): 150-164.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576527

ABSTRACT

Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.


Subject(s)
Cell Nucleus/enzymology , DNA Damage , Deubiquitinating Enzymes/metabolism , Genomic Instability , Polyubiquitin/metabolism , Binding Sites , Cell Survival , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , HEK293 Cells , HeLa Cells , Humans , Jurkat Cells , Lysine , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Substrate Specificity , Ubiquitination
11.
Chembiochem ; 18(1): 66-71, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27862792

ABSTRACT

The full breadth of the field: The 2016 EMBO Chemical Biology Conference, covering topics from tool development to biological applications and from computational drug design to synthetic chemistry, took place in Heidelberg from 31st August to 3rd September.


Subject(s)
Drug Discovery , Biological Products/chemistry , Epigenomics , Protein Engineering , Research , Second Messenger Systems
12.
Biochem J ; 473(14): 2249, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27407172
13.
Chembiochem ; 17(15): 1472-80, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27197715

ABSTRACT

We describe the genetically directed incorporation of aminooxy functionality into recombinant proteins by using a mutant Methanosarcina barkeri pyrrolysyl-tRNA synthetase/tRNACUA pair. This allows the general production of nonhydrolysable ubiquitin conjugates of recombinant origin by bioorthogonal oxime ligation. This was exemplified by the preparation of nonhydrolysable versions of diubiquitin, polymeric ubiquitin chains and ubiquitylated SUMO. The conjugates exhibited unrivalled isostery with the native isopeptide bond, as inferred from structural and biophysical characterisation. Furthermore, the conjugates functioned as nanomolar inhibitors of deubiquitylating enzymes and were recognised by linkage-specific antibodies. This technology should provide a versatile platform for the development of powerful tools for studying deubiquitylating enzymes and for elucidating the cellular roles of diverse polyubiquitin linkages.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Methanosarcina barkeri/enzymology , Ubiquitins/chemistry , Bioengineering/methods , Deubiquitinating Enzymes , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Oximes/chemistry , Polymerization
14.
Biochem J ; 473(10): 1297-314, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27208213

ABSTRACT

The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.


Subject(s)
Ubiquitin/chemistry , Ubiquitin/metabolism , Animals , Humans , Models, Biological , Protein Conformation , Ubiquitination
16.
Nat Chem Biol ; 12(5): 324-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26928937

ABSTRACT

E3 ligases represent an important class of enzymes, yet there are currently no chemical probes for profiling their activity. We develop a new class of activity-based probe by re-engineering a ubiquitin-charged E2 conjugating enzyme and demonstrate the utility of these probes by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in parkin activation. We also profile parkin mutations associated with patients with Parkinson's disease and demonstrate that they mediate their effect largely by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous parkin activity, revealing that endogenous parkin is activated in neuronal cell lines (≥75%) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-parkin signaling, as demonstrated by its compatibility with samples derived from individuals with Parkinson's disease.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Ubiquitin-Protein Ligases/metabolism , Fibroblasts/metabolism , HeLa Cells , Humans , Mutation , Ubiquitin-Protein Ligases/genetics
17.
Chembiochem ; 16(11): 1574-9, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26010437

ABSTRACT

Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease-associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho-Ser65-ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation.


Subject(s)
Serine/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Disulfides/chemistry , Enzyme Activation , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Conformation , Ubiquitin-Protein Ligases/metabolism
18.
ACS Chem Biol ; 10(6): 1542-54, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25845023

ABSTRACT

Transthiolation is a fundamental biological reaction and is utilized by many enzymes involved in the conjugation of ubiquitin and ubiquitin-like proteins. However, tools that enable selective profiling of this activity are lacking. Transthiolation requires cysteine-cysteine juxtaposition; therefore a method that enables irreversible "stapling" of proximal thiols would facilitate the development of novel probes that could be used to profile this activity. Herein, we characterize biocompatible chemistry that enables sequential functionalization of cysteines within proteins at a single atomic center. We use our method to develop a new class of activity-based probe that profiles transthiolation activity of human E1 activating enzymes. We demonstrate use in vitro and in situ and compatibility with competitive activity-based protein profiling. We also use the probe to gain insight into the determinants of transthiolation between E2 and a RING-in-between-RING (RBR) E3 ligase. Furthermore, we anticipate that this method of thiol functionalization will have broad utility by enabling simple redox-stable cross-linking of proximal cysteines in general.


Subject(s)
Cysteine/chemistry , Sulfhydryl Compounds/chemistry , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitins/chemistry , Amino Acid Sequence , Cysteine/metabolism , Dimethylamines/chemistry , Ethylenes/chemistry , HEK293 Cells , Humans , Models, Molecular , Molecular Sequence Data , Sulfhydryl Compounds/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
19.
Biochem J ; 466(3): 489-98, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25489924

ABSTRACT

Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.


Subject(s)
Escherichia coli Proteins/metabolism , Polymers/metabolism , Ubiquitin Thiolesterase/metabolism , Escherichia coli Proteins/chemistry , Polymers/chemistry , Protein Structure, Tertiary , Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitination/physiology
20.
Nat Commun ; 5: 4763, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25159004

ABSTRACT

Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analysing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAB/MPN/Mov34 metalloenzyme DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs.


Subject(s)
Protease Inhibitors/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Ubiquitin-Specific Proteases/metabolism , Humans , Inhibitory Concentration 50 , Nitriles/pharmacology , Nitrofurans/pharmacology , Reproducibility of Results , Substrate Specificity , Sulfones/pharmacology , Ubiquitin/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Peptidase 7 , Ubiquitin-Specific Proteases/analysis , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...