Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22283593

ABSTRACT

Summary BackgroundBivalent mRNA-based COVID-19 vaccines encoding the ancestral and Omicron spike protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We compared the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent Omicron BA.1 vaccines in individuals who were primed with adenovirus- or mRNA-based vaccines. MethodsIn this open-label, multicenter, randomized, controlled trial, healthcare workers primed with Ad26.COV2.S or mRNA-based vaccines were boosted with mRNA-1273.214 or BNT162b2 OMI BA.1. The primary endpoint was the fold change in S1-specific IgG antibodies pre- and 28 days after booster vaccination. Secondary outcomes were fast response, (antibody levels on day 7), reactogenicity, neutralization of circulating variants and (cross-reactive) SARS-CoV-2-specific T-cell responses. FindingsNo effect of different priming regimens was observed on bivalent vaccination boosted S1-specific IgG antibodies. The largest increase in S1-specific IgG antibodies occurred between day 0 and 7 after bivalent booster. Neutralizing antibodies targeting the variants in the bivalent vaccine (ancestral SARS-CoV-2 and Omicron BA.1) were boosted. In addition, neutralizing antibodies against the circulating Omicron BA.5 variant increased after BA.1 bivalent booster. T-cell responses were boosted and retained reactivity with variants from the Omicron sub-lineage. InterpretationBivalent booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 resulted in a rapid recall of humoral and cellular immune responses independent of the initial priming regimen. Although no preferential boosting of variant-specific responses was observed, the induced antibodies and T-cells cross-reacted with Omicron BA.1 and BA.5. It remains crucial to monitor immunity at the population level, and simultaneously antigenic drift at the virus level, to determine the necessity (and timing) of COVID-19 booster vaccinations. FundingThe Netherlands Organization for Health Research and Development (ZonMw) grant agreement 10430072110001. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSVaccination against coronavirus disease-2019 (COVID-19) initially provided high levels of protection from both infection and severe disease. However, the emergence of antigenically distinct variants resulted in frequent breakthrough infections, especially with the emergence of variants from the Omicron sub-lineages. The frequent mutations in the Spike protein, and specifically the receptor binding domain (RBD), resulted in the recommendation by the WHO advisory group to update vaccines with novel antigens. Bivalent mRNA-based vaccines, encoding the Spike protein from both the ancestral SARS-CoV-2 and Omicron BA.1 (and later on BA.5) were subsequently introduced. Initial small comparative studies have been released on the evaluation of these bivalent vaccines, but it is essential is to evaluate the immunogenicity and reactogenicity of the vaccines against the background of different priming regimens. Added value of this studyThe SWITCH ON trial evaluated the bivalent booster vaccines BNT162b2 OMI BA.1 and mRNA-1273.214 vaccine in a cohort of Dutch healthcare workers. Study participants were primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2. The study investigated three important topics: (1) immunogenicity of Omicron BA.1 bivalent vaccines after Ad26.COV2.S- or mRNA-based vaccine priming, (2) rapid immunological recall responses, indicative of preserved humoral and cellular immunological memory, and (3) cross-reactivity with relevant variants after booster vaccination. Implication of all the available evidenceVaccination with the bivalent booster mRNA-1273.214 or BNT162b2 OMI BA.1 resulted in a rapid recall of humoral and cellular immune responses independent of the initial priming regimen. The largest fraction of (neutralizing) antibodies and virus-specific T-cells was recalled within 7 days post booster vaccination. Although no preferential boosting of variant-specific responses was observed, the induced antibodies and T-cells cross-reacted with Omicron BA.1, which was included in the vaccine, but also the more antigenically distinct BA.5. It remains crucial to monitor immunity at the population level, and simultaneously antigenic drift at the virus level, to determine the necessity (and timing) of COVID-19 booster vaccinations.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22277639

ABSTRACT

A large proportion of the global population received a single dose of the Ad26.COV2.S coronavirus disease-2019 (COVID-19) vaccine as priming vaccination, which was shown to provide protection against moderate to severe COVID-19. However, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants that harbor immune-evasive mutations in the spike protein led to the recommendation of booster vaccinations after Ad26.COV2.S priming. Recent studies showed that heterologous booster vaccination with an mRNA-based vaccine following Ad26.COV2.S priming leads to high antibody levels. However, how heterologous booster vaccination affects other functional aspects of the immune response remains unknown. Here, we performed immunological profiling on samples obtained from Ad26.COV2.S-vaccinated individuals before and after a homologous (Ad26.COV2.S) or heterologous (mRNA-1273 or BNT162b2) booster vaccination. Both homologous and heterologous booster vaccination increased antibodies with multiple functionalities towards ancestral SARS-CoV-2, the Delta and Omicron BA.1 variants. Especially, mRNA-based booster vaccination induced high levels of neutralizing antibodies and antibodies with various Fc-mediated effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. In contrast, T cell responses were similar in magnitude following homologous or heterologous booster vaccination, and retained functionality towards Delta and Omicron BA.1. However, only heterologous booster vaccination with an mRNA-based vaccine led to the expansion of SARS-CoV-2-specific T cell clones, without an increase in the breadth of the T cell repertoire as assessed by T cell receptor sequencing. In conclusion, we show that Ad26.COV2.S priming vaccination provides a solid immunological base for heterologous boosting with an mRNA-based COVID-19 vaccine, increasing humoral and cellular responses targeting newly emerging variants of concern. One sentence summaryAd26.COV2.S priming provides a solid immunological base for extension of cellular and humoral immune responses following an mRNA-based booster.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22273197

ABSTRACT

BackgroundIn the general population, illness after infection with the SARS-CoV-2 Omicron variant is less severe compared with previous variants. Data on the disease burden of Omicron in immunocompromised patients are lacking. We investigated the clinical characteristics and outcome of a cohort of immunocompromised patients with COVID-19 caused by Omicron. MethodsSolid organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients on immunosuppressive therapy infected with the Omicron variant, were included. Patients were contacted regularly until symptom resolution. Clinical characteristics of consenting patients were collected through their electronic patient files. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. ResultsA total of 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received three mRNA vaccinations. While only one patient died, 23 (20%) required hospital admission for a median of 11 days. A low SARS-CoV-2 IgG antibody response (<300 BAU/mL) at diagnosis, higher age, being a lung transplant recipient, more comorbidities and a higher frailty were associated with hospital admission (all p<0.01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of them, of which one died. ConclusionsWhile the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. Besides vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients. SummaryCOVID-19-associated morbidity and mortality in immunocompromised patients is unknown for the SARS-CoV-2 Omicron variant. This prospective registry, demonstrated low COVID-19-associated mortality in these vulnerable patients. However, morbidity remained substantial. Other interventions to abate COVID-19 severity are needed.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22273221

ABSTRACT

BackgroundVaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. Methods and FindingsA prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S and Ad26.COV2.S vaccines in adult PLWH, without prior COVID-19, compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response and reactogenicity. Between February-September 2021, 1154 PLWH (median age 53 [IQR 44-60], 86% male) and 440 controls (median age 43 [IQR 33-53], 29% male) were included. 884 PLWH received BNT162b2, 100 mRNA-1273, 150 ChAdOx1-S, and 20 Ad26.COV2.S. 99% were on antiretroviral therapy, 98% virally suppressed, and the median CD4+T-cell count was 710 cells/{micro}L [IQR 520-913]. 247 controls received mRNA-1273, 94 BNT162b2, 26 ChAdOx1-S and 73 Ad26.COV2.S. After mRNA vaccination, geometric mean concentration was 1418 BAU/mL in PLWH (95%CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV-status remained associated with a decreased response (0.607, 95%CI 0.508-0.725). In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+T-cell counts 250-500 cells/{micro}L (2.845, 95%CI 1.876-4.314) or >500 cells/{micro}L (2.936, 95%CI 1.961-4.394), whilst a viral load >50 copies/mL was associated with a reduced response (0.454, 95%CI 0.286-0.720). Increased IFN-{gamma}, CD4+, and CD8+T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation induced marker assays, comparable to controls. Reactogenicity was generally mild without vaccine-related SAE. ConclusionAfter vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH. To reach and maintain the same serological responses and vaccine efficacy as HIV-negative controls, additional vaccinations are probably required.

SELECTION OF CITATIONS
SEARCH DETAIL
...