Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(24): 39568-39582, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041275

ABSTRACT

Terahertz (THz) time-domain spectroscopy has been investigated for assessment of the hydration levels in the cornea, intraocular pressure, and changes in corneal topography. Previous efforts at THz imaging of the cornea have employed off-axis parabolic mirrors to achieve normal incidence along the spherical surface. However, this comes at the cost of an asymmetric field-of-view (FOV) and a long scan time because it requires raster-scanning of the collimated beam across the large mirror diameter. This paper proposes a solution by designing a pair of aspheric lenses that can provide a larger symmetric spherical FOV (9.6 mm) and reduce the scan time by two orders of magnitude using a novel beam-steering approach. A hyperbolic-elliptical lens was designed and optimized to achieve normal incidence and phase-front matching between the focused THz beam and the target curvature. The lenses were machined from a slab of high-density polyethylene and characterized in comparison to ray-tracing simulations by imaging several targets of similar sizes to the cornea. Our experimental results showed excellent agreement in the increased symmetric FOV and confirmed the reduction in scan time to about 3-4 seconds. In the future, this lens design process can be extended for imaging the sclera of the eye and other curved biological surfaces, such as the nose and fingers.

2.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501773

ABSTRACT

The endothelial layer of the cornea plays a critical role in regulating its hydration by actively controlling fluid intake in the tissue via transporting the excess fluid out to the aqueous humor. A damaged corneal endothelial layer leads to perturbations in tissue hydration and edema, which can impact corneal transparency and visual acuity. We utilized a non-contact terahertz (THz) scanner designed for imaging spherical targets to discriminate between ex vivo corneal samples with intact and damaged endothelial layers. To create varying grades of corneal edema, the intraocular pressures of the whole porcine eye globe samples (n = 19) were increased to either 25, 35 or 45 mmHg for 4 h before returning to normal pressure levels at 15 mmHg for the remaining 4 h. Changes in tissue hydration were assessed by differences in spectral slopes between 0.4 and 0.8 THz. Our results indicate that the THz response of the corneal samples can vary according to the differences in the endothelial cell density, as determined by SEM imaging. We show that this spectroscopic difference is statistically significant and can be used to assess the intactness of the endothelial layer. These results demonstrate that THz can noninvasively assess the corneal endothelium and provide valuable complimentary information for the study and diagnosis of corneal diseases that perturb the tissue hydration.


Subject(s)
Corneal Diseases , Terahertz Spectroscopy , Swine , Animals , Support Vector Machine , Cornea/physiology , Endothelium, Corneal/diagnostic imaging , Corneal Diseases/diagnosis , Terahertz Spectroscopy/methods , Edema
3.
Biomed Opt Express ; 12(6): 3438-3449, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221670

ABSTRACT

Elevated intraocular pressure (IOP) results in endothelial layer damage that can induce corneal hydration perturbations. We investigated the potential of terahertz spectroscopy in measuring the IOP levels through mapping corneal water content. We controlled the IOP levels in ex vivo rabbit and porcine eye samples while monitoring the change in corneal hydration using a terahertz time-domain spectroscopy (THz-TDS) scanner. Our results showed a statistically significant increase in the THz reflectivity between 0.4 and 0.6 THz corresponding to the increase in the IOP. Endothelial layer damage was confirmed using scanning electron microscopy (SEM) of the corneal biopsy samples. Our empirical results indicate that the THz-TDS can be used to track IOP levels through the changes in corneal hydration.

4.
Opt Lett ; 46(5): 1065-1068, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649658

ABSTRACT

Topographical abnormality in corneal tissue is a common diagnostic marker for many eye diseases and injuries. Using an asynchronous optical sampling terahertz time-domain spectroscopy setup, we developed a non-contact and normal-incidence imaging system to measure topographic changes along the surface of spherical samples. We obtained orthogonal 1D scans of calibration spheres to evaluate the minimum axial resolution of our system. We determined the axial and spatial resolution of the scanner using 3D-printed spherical cross and Boehler star targets. Furthermore, we characterized the asymmetrical performance of the scanner due to the use of an off-axis parabolic mirror. Finally, we developed an edge-detection filter to aid with improving the topographic scans. We showed that when imaging samples were comparable in size to the human cornea, the axial and spherical spatial resolutions were limited to about 15 µm (∼λ/67) and 1 mm, respectively.


Subject(s)
Cornea/diagnostic imaging , Diagnostic Imaging , Calibration , Humans
5.
AIP Adv ; 10(12): 125313, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344001

ABSTRACT

Telecentric beam scanning using f-θ lenses offers nearly uniform spot size, linear beam displacement, and normal incidence angle over a planar surface. These unique properties allow for the minimization of imaging distortion over a wide field-of-view. In this article, we present a numerical method for designing custom f-θ lenses in the THz regime. We fabricated three lenses made from different commonly used polymer materials in the THz optics. We demonstrated their optical performance metrics compared to a conventional plano-convex lens over the broadband 0.3 THz-1 THz range. We find that the f-θ lens designed using the optical properties of high-density polyethylene achieved superior performance by maintaining a constant phase over a wide field of view of about 34°. We demonstrate this isophase property by measuring a constant time of arrival of the THz time-domain pulses over a reference mirror with a standard deviation of ∼19 fs, in excellent agreement with simulation predictions. This work will pave the way for the design and implementation of highly precise and fast telecentric imaging systems in the THz frequencies.

6.
Opt Express ; 28(18): 26612-26622, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906931

ABSTRACT

We report on the development and performance characterization of a telecentric terahertz spectroscopic scanner using an f-θ objective lens and a single gimballed scanning mirror for image formation. We derived a beam steering transform to compensate for the intercoupling of the gimballed mirror axes and the distortions caused by an imperfect scanning lens. We characterize the optical performance of the system in both the time and spatial domains, demonstrating a constant diffraction-limited imaging resolution over the entire field of view. Finally, given the large depth of focus of the objective lens, we demonstrate the broadband imaging capability at different depths using a Boehler star target. This imaging setup has the potential to be miniaturized into portable form factors for field-deployable scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...