Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166333, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37652372

ABSTRACT

Seasonal snow cover duration is the net result from many processes acting on snow fallen on the Earth's surface. Several of these processes feed back into the atmosphere-cryosphere system causing non-linear interactions. The timing of snow retreat is of essential importance, but the duration of snow cover has large spatiotemporal variabilities. However, from a large data set of observed snow depth changes in northern Finland, systematic similar evolutions are identified that allow for a considerable simplification and reduction of the complexity in snow depth changes. Here, a novel conceptual framework is designed based on dividing the season into two main periods (dark and bright period, based on solar irradiance), for which snow depth decrease is parameterized based on three variables, average temperature, incoming shortwave radiation, and light-absorbing particles (LAP) in the snow. The processes are simplified into two linear relations, and a new formulation for concentration enhancement of LAP, which is dependent on snow depth decrease, is given. The results show that the seasonal snow cover duration is shifted by about one day for every 10 mm snow water equivalent of precipitation. This effect is comparable in scale to that of doubling of the amount of LAP concentration in snow. We also found that the combined shift in snow cover duration from interannual variability in ambient temperature and shortwave radiation (warm and bright vs. cold and dark season) is large enough to explain the variability of a couple of weeks for a given precipitation amount in Northern Finland.

2.
Environ Sci Technol ; 57(13): 5137-5148, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36944040

ABSTRACT

Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.


Subject(s)
Atmosphere , Soot , Humans , Aged , Soot/analysis , Soot/chemistry , Particle Size , Coal , Aerosols/analysis
3.
J Environ Radioact ; 251-252: 106930, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35700568

ABSTRACT

The Antarctic region is considered to be the least contaminated in the world due to its specific location and separation of this area as well as low activity of humans (Hashimoto et al., 1988). Additionally, in accordance with the provision of the Antarctic Treaty System (Antarctic Treaty Secretariat, 2020) it is prohibited to conduct any actions with nuclear materials in this area. Nevertheless, Antarctica is not free from radioactive pollutants (human activity, nuclear tests or accidents) created in other parts of the world and transported by air masses or sea currents to the region of the South Pole where they can be detected. This paper presents results of measurements of activity concentrations of both natural and artificial gamma-ray emitting isotopes present on air-filters exposed in the ground level of the air in Marambio Base (Antarctic Peninsula). Furthermore, comparison with results obtained from other part of Antarctica were performed (i.e. Aboa Station, including radioisotope sources estimation). Investigation suggests that the northern part of the Antarctic Peninsula is effectively isolated from the Antarctic mainland and, in case of air radioactivity, should be considered separately.


Subject(s)
Radiation Monitoring , Radioactivity , Antarctic Regions , Environmental Monitoring/methods , Humans
4.
Environ Sci Technol ; 48(1): 827-36, 2014.
Article in English | MEDLINE | ID: mdl-24328080

ABSTRACT

Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Coal/analysis , Fuel Oils/analysis , Hot Temperature , Optical Phenomena , Wood/chemistry , Air Pollution/analysis , Particle Size , Particulate Matter/chemistry
5.
J Air Waste Manag Assoc ; 57(10): 1214-22, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17972766

ABSTRACT

A simple method for correcting for the loading effects of aethalometer data is presented. The formula BC(CORRECTED) = (1 + k x ATN) x BC(NONCORRECTED), where ATN is the attenuation and BC is black carbon, was used for correcting aethalometer data obtained from measurements at three different sites: a subway station in Helsinki, an urban background measurement station in Helsinki, and a rural station in Hyytiälä in central Finland. The BC data were compared with simultaneously measured aerosol volume concentrations (V). After the correction algorithm, the BC-to-V ratio remained relatively stable between consequent filter spots, which can be regarded as indirect evidence that the correction algorithm works. The k value calculated from the outdoor sites had a clear seasonal cycle that could be explained by darker aerosol in winter than in summer. When the contribution of BC to the total aerosol volume was high, the k factor was high and vice versa. In winter, the k values at all wavelengths were very close to that obtained from the subway station data. In summer, the k value was wavelength dependent and often negative. When the k value is negative, the noncorrected BC concentrations overestimated the true concentrations.


Subject(s)
Environmental Monitoring , Soot/analysis , Aerosols/analysis , Algorithms , Finland , Light , Models, Chemical , Seasons , Soot/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL