Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(30): e2300055, 2023 10.
Article in English | MEDLINE | ID: mdl-37712185

ABSTRACT

Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed "clickable dynamic bioinks". These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Biocompatible Materials/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Polymers , Bioprinting/methods , Hyaluronic Acid/chemistry
2.
Acta Biomater ; 140: 324-337, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34843951

ABSTRACT

Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.


Subject(s)
Hydrogels , Regenerative Medicine , Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Porosity , Tissue Engineering/methods
3.
Acta Biomater ; 65: 112-122, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29128532

ABSTRACT

Articular cartilage is a connective tissue which does not spontaneously heal. To address this issue, biomaterial-assisted cell therapy has been researched with promising advances. The lack of strong mechanical properties is still a concern despite significant progress in three-dimensional scaffolds. This article's objective was to develop a composite hydrogel using a small amount of nano-reinforcement clay known as laponites. These laponites were capable of self-setting within the gel structure of the silated hydroxypropylmethyl cellulose (Si-HPMC) hydrogel. Laponites (XLG) were mixed with Si-HPMC to prepare composite hydrogels leading to the development of a hybrid interpenetrating network. This interpenetrating network increases the mechanical properties of the hydrogel. The in vitro investigations showed no side effects from the XLG regarding cytocompatibility or oxygen diffusion within the composite after cross-linking. The ability of the hybrid scaffold containing the composite hydrogel and chondrogenic cells to form a cartilaginous tissue in vivo was investigated during a 6-week implantation in subcutaneous pockets of nude mice. Histological analysis of the composite constructs revealed the formation of a cartilage-like tissue with an extracellular matrix containing glycosaminoglycans and collagens. Overall, this new hybrid construct demonstrates an interpenetrating network which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, oxygen diffusion, or the ability of chondrogenic cells to self-organize in the cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects in a large animal model of articular cartilage defects. STATEMENT OF SIGNIFICANCE: Articular cartilage is a tissue that fails to heal spontaneously. To address this clinically relevant issue, biomaterial-assisted cell therapy is considered promising but often lacks adequate mechanical properties. Our objective was to develop a composite hydrogel using a small amount of nano reinforcement (laponite) capable of gelling within polysaccharide based self-crosslinking hydrogel. This new hybrid construct demonstrates an interpenetrating network (IPN) which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, O2 diffusion and the ability of chondrogenic cells to self-organize in cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects and will now be considered in a large animal model of articular cartilage defects.


Subject(s)
Cartilage, Articular/cytology , Hydrogels/chemistry , Hypromellose Derivatives/chemistry , N-Acetylneuraminic Acid/chemistry , Nanoparticles/chemistry , Silicates/chemistry , Tissue Engineering , Adipose Tissue/cytology , Animals , Cell Survival , Cells, Cultured , Collagen/chemistry , Extracellular Matrix/chemistry , Female , Glycosaminoglycans/chemistry , Humans , Mice , Mice, Nude , Microscopy, Electron, Scanning , Oxygen/metabolism , Stromal Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...