Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792235

ABSTRACT

A general mechanism for catalytic urethane formation in the presence of acid catalysts, dimethyl hydrogen phosphate (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA), has been studied using theoretical methods. The reaction of phenyl isocyanate (PhNCO) and butan-1-ol (BuOH) has been selected to describe the energetic and structural features of the catalyst-free urethane formation. The catalytic activities of DMHP, MSA, and TFMSA have been compared by adding them to the PhNCO-BuOH model system. The thermodynamic properties of the reactions were computed by using the G3MP2BHandHLYP composite method. It was revealed that in the presence of trifluoromethanesulfonic acid, the activation energy was the lowest within the studied set of catalysts. The achieved results indicate that acids can be successfully employed in urethane synthesis and the mechanism was described.

2.
Polymers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675045

ABSTRACT

A sudden increase in polyurethane (PU) production necessitates viable recycling methods for the waste generated. PU is one of the most important plastic materials with a wide range of applications; however, the stability of the urethane linkage is a major issue in chemical recycling. In this work, termination reactions of a model urethane molecule, namely methyl N-phenyl carbamate (MPCate), are investigated using G3MP2B3 composite quantum chemical method. Our main goal was to gain insights into the energetic profile of urethane bond termination and find an applicable chemical recycling method. Hydrogenation, hydrolysis, methanolysis, peroxidation, glycolysis, ammonolysis, reduction with methylamine and termination by dimethyl phosphite were explored in both gas and condensed phases. Out of these chemicals, degradation by H2, H2O2 and CH3NH2 revealed promising results with lower activation barriers and exergonic pathways, especially in water solvation. Implementing these effective PU recycling methods can also have significant economic benefits since the obtained products from the reactions are industrially relevant substances. For example, aniline and dimethyl carbonate could be reusable in polymer technologies serving as potential methods for circular economy. As further potential transformations, several ionizations of MPCate were also examined including electron capture and detachment, protonation/deprotonation and reaction with OH-. Alkaline digestion against the model urethane MPCate was found to be promising due to the relatively low activation energy. In an ideal case, the transformation of the urethane bond could be an enzymatic process; therefore, potential enzymes, such as lipoxygenase, were also considered for the catalysis of peroxidation, and lipases for methanolysis.

3.
Phys Chem Chem Phys ; 26(8): 7103-7108, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345799

ABSTRACT

A computational study of the stoichiometric reaction and catalytic effect of 2-dimethylaminoethanol (DMEA) in urethane formation was performed. DMEA, besides its catalytic tertiary amine site, contains a hydroxyl group that can react with isocyanates and thus, it can affect the synthesis of polyurethane. In the catalytic system, the reaction between phenyl isocyanate and butan-1-ol, involving DMEA as a catalyst, was investigated. Meanwhile, for the competitive stoichiometric process, the reaction between phenyl isocyanate and DMEA was also considered. Both reactions were investigated by using the G3MP2BHandHLYP composite method and acetonitrile was chosen as the solvent. It was revealed that both pathways (catalytic and stoichiometric processes) are similar thermodynamically, but the catalytic reaction is preferred kinetically, which indicates the applicability of DMEA in urethane synthesis.

4.
Sci Rep ; 14(1): 4193, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378814

ABSTRACT

Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method. The catalyst particles were examined by TEM and X-ray diffraction. The palladium immobilized on the bentonite crystal surface was identified using an XRD and HRTEM device. The obtained catalyst possesses the advantageous property of being easily separable due to its magnetizability on a natural mineral support largely available and obtained through low carbon- and energy footprint methods. The catalyst demonstrated outstanding performance with a 2,4-DNT conversion rate exceeding 99% along with high yields and selectivity towards 2,4-TDA and all of this achieved within a short reaction time. Furthermore, the developed catalyst exhibited excellent stability, attributed to the strong interaction between the catalytically active metal and its support. Even after four cycles of reuse, the catalytic activity remained unaffected and the Pd content of the catalyst did not change, which indicates that the palladium component remained firmly attached to the magnetic support's surface.

5.
Chem Commun (Camb) ; 60(8): 1008-1011, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168692

ABSTRACT

A new model, based on the presence of the excited state iminium ion (Ar = NH2+), is proposed to interpret the solvatochromic behavior of symmetric 1,5- and 1,8-diaminonaphtahelenes (DANs) in aprotic to protic media. The importance of using explicit solvent models during DFT calculations in protic solvents to find the proper excited structure for symmetric molecules is also highlighted.

6.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139374

ABSTRACT

Catalysts with magnetic properties can be easily recovered from the reaction medium without loss by using a magnetic field, which highly improves their applicability. To design such systems, we have successfully combined the magnetic properties of nickel ferrite nanoparticles with the positive properties of carbon-based catalyst supports. Amine-functionalized NiFe2O4 nanoparticles were deposited on the surfaces of nitrogen-doped bamboo-like carbon nanotubes (N-BCNT) and carbon nanolayers (CNL) by using a coprecipitation process. The magnetizable catalyst supports were decorated by Pd nanoparticles, and their catalytic activity was tested through the hydrogenation of nitrobenzene (NB). By using the prepared catalysts, high nitrobenzene conversion (100% for 120 min at 333 K) and a high aniline yield (99%) were achieved. The Pd/NiFe2O4-CNL catalyst was remarkable in terms of stability during the reuse tests due to the strong interaction formed between the catalytically active metal and its support (the activity was retained during four cycles of 120 min at 333 K). Furthermore, despite the long-lasting mechanical stress, no significant palladium loss (only 0.08 wt%) was detected.


Subject(s)
Nanotubes, Carbon , Nickel , Hydrogenation , Aniline Compounds , Nitrobenzenes
7.
Int J Mol Sci ; 24(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003394

ABSTRACT

The need for stable and well-defined magnetic nanoparticles is constantly increasing in biomedical applications; however, their preparation remains challenging. We used two different solvothermal methods (12 h reflux and a 4 min microwave, MW) to synthesize amine-functionalized zinc ferrite (ZnFe2O4-NH2) superparamagnetic nanoparticles. The morphological features of the two ferrite samples were the same, but the average particle size was slightly larger in the case of MW activation: 47 ± 14 nm (Refl.) vs. 63 ± 20 nm (MW). Phase identification measurements confirmed the exclusive presence of zinc ferrite with virtually the same magnetic properties. The Refl. samples had a zeta potential of -23.8 ± 4.4 mV, in contrast to the +7.6 ± 6.8 mV measured for the MW sample. To overcome stability problems in the colloidal phase, the ferrite nanoparticles were embedded in polyvinylpyrrolidone and could be easily redispersed in water. Two PVP-coated zinc ferrite samples were administered (1 mg/mL ZnFe2O4) in X BalbC mice and were compared as contrast agents in magnetic resonance imaging (MRI). After determining the r1/r2 ratio, the samples were compared to other commercially available contrast agents. Consistent with other SPION nanoparticles, our sample exhibits a concentrated presence in the hepatic region of the animals, with comparable biodistribution and pharmacokinetics suspected. Moreover, a small dose of 1.3 mg/body weight kg was found to be sufficient for effective imaging. It should also be noted that no toxic side effects were observed, making ZnFe2O4-NH2 advantageous for pharmaceutical formulations.


Subject(s)
Contrast Media , Nanoparticles , Mice , Animals , Polymers , Amines , Zinc , Tissue Distribution , Magnetic Resonance Imaging/methods , Ferric Compounds , Pharmaceutical Preparations
8.
Sci Rep ; 13(1): 17950, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863884

ABSTRACT

A theoretical study of urethane formation through the reaction of phenyl isocyanate and butan-1-ol was carried out, without and in the presence of morpholine, and 4-methylmorpholine catalysts. The reaction with and without catalysts was studied at BHandHLYP/6-31G(d) and G3MP2BHandHLYP levels of theories. The reaction mechanism in the presence of catalysts differs significantly from the catalyst-free case and includes seven steps. The catalyst-free system was investigated along with the catalytic process, the geometries were optimized, and the corresponding thermodynamic properties were calculated. Calculated reactant complexes were compared with crystal structures of morpholine, and 4-methylmorpholine complexed with diols found in the literature. The structures were strikingly similar and thus, the validity of the proposed and studied general organocatalytic reaction mechanism was partially verified. Meanwhile, an irregularity in the energy profile occurred due to the zwitterionic nature of an intermediate. To handle the irregularity, a correction was implemented which handles the appearance of a zwitterionic structure and the corresponding energetic properties. The results showed that morpholine is less effective catalyst compared to 4-methylmorpholine, which can be associated with the difference in their PA (1523.95 and 963.07 kJ/mol, respectively). The current results prove the important role of amine catalysts in urethane synthesis which can be applied in polyurethane catalyst design and development.

9.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686152

ABSTRACT

Easy preparation, good yield and easy recovery are the key challenges in the development of industrial catalysts. To meet all these three criteria, we have prepared intelligent, magnetizable NiFe2O4- and CoFe2O4-supported palladium catalysts that can be easily and completely recovered from the reaction medium by magnetic separation. The fast and facile preparation was achieved by a solvothermal method followed by sonochemical-assisted decomposition of the palladium nanoparticles onto the surface of the magnetic nanoparticles. The metal-support interaction was enhanced by amine functionalization of the supports using monoethanolamine. The performance and stability of the non-functionalized and amine-functionalized NiFe2O4- and CoFe2O4-supported palladium catalysts were compared in the industrially important nitrobenzene hydrogenation reaction. All catalysts showed high catalytic activity during aniline synthesis; complete nitrobenzene conversion and high aniline yield (above 97 n/n%) and selectivity (above 98 n/n%) were achieved. However, during reuse tests, the activity of the non-functionalized catalysts decreased, as the palladium was leached from the surface of the support. On the other hand, in the case of their amine-functionalized counterparts, there was no decrease in activity, and a non-significant decrease in palladium content could be measured. Based on these results, it can be concluded that amine functionalization of transition metal ferrites may result in more effective catalysts due to the enhanced metal-carrier interaction between the support and the precious metal.


Subject(s)
Metal Nanoparticles , Nickel , Amines , Palladium , Hydrogenation , Cobalt , Aniline Compounds , Nitrobenzenes
10.
Int J Mol Sci ; 24(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37762494

ABSTRACT

For pathogens identification, the PCR test is a widely used method, which requires the isolation of nucleic acids from different samples. This extraction can be based on the principle of magnetic separation. In our work, amine-functionalized magnesium ferrite nanoparticles were synthesized for this application by the coprecipitation of ethanolamine in ethylene glycol from Mg(II) and Fe(II) precursors. The conventional synthesis method involves a reaction time of 12 h (MgFe2O4-H&R MNP); however, in our modified method, the reaction time could be significantly reduced to only 4 min by microwave-assisted synthesis (MgFe2O4-MW MNP). A comparison was made between the amine-functionalized MgFe2O4 samples prepared by two methods in terms of the DNA-binding capacity. The experimental results showed that the two types of amine-functionalized magnesium ferrite magnetic nanoparticles (MNPs) were equally effective in terms of their DNA extraction yield. Moreover, by using a few minutes-long microwave synthesis, we obtained the same quality magnesium ferrite particles as those made through the long and energy-intensive 12-h production method. This advancement has the potential to improve and expedite pathogen identification processes, helping to better prevent the spread of epidemics.


Subject(s)
Amines , Magnetite Nanoparticles , Physical Phenomena , Ethanolamine
11.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569588

ABSTRACT

Catalytic activity of a palladium catalyst with a porous carbon support was prepared and tested for benzophenone hydrogenation. The selectivity and yields toward the two possible reaction products (benzhydrol and diphenylmethane) can be directed by the applied solvent. It was found that in isopropanol, the prepared support was selective towards diphenylmethane with high conversion (99% selectivity and 99% benzophenone conversion on 323 K after 240 min). This selectivity might be explained by the presence of the incorporated structural nitrogens in the support.


Subject(s)
Carbon , Palladium , Hydrogenation , Carbon/chemistry , Palladium/chemistry , Nitrogen/chemistry
12.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511224

ABSTRACT

Utilization of multivariate data analysis in catalysis research has extraordinary importance. The aim of the MIRA21 (MIskolc RAnking 21) model is to characterize heterogeneous catalysts with bias-free quantifiable data from 15 different variables to standardize catalyst characterization and provide an easy tool to compare, rank, and classify catalysts. The present work introduces and mathematically validates the MIRA21 model by identifying fundamentals affecting catalyst comparison and provides support for catalyst design. Literature data of 2,4-dinitrotoluene hydrogenation catalysts for toluene diamine synthesis were analyzed by using the descriptor system of MIRA21. In this study, exploratory data analysis (EDA) has been used to understand the relationships between individual variables such as catalyst performance, reaction conditions, catalyst compositions, and sustainable parameters. The results will be applicable in catalyst design, and using machine learning tools will also be possible.


Subject(s)
Hydrogenation , Catalysis
13.
Heliyon ; 9(5): e16064, 2023 May.
Article in English | MEDLINE | ID: mdl-37234670

ABSTRACT

Oxidative stress makes it difficult to preserve food and negatively affect the applicability of polymeric packaging. It is typically caused by an excess of free radicals, and it is dangerous to human health, resulting in the onset and development of diseases. The antioxidant ability and activity of ethylenediaminetetraacetic acid (EDTA) and Irganox (Irg) as synthetic antioxidant additives were studied. Three different antioxidant mechanisms were considered and compared by calculating bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) values. Two density functional theory (DFT) methods were used, M05-2X and M06-2X with the 6-311++G(2d,2p) basis set in gas phase. Both additives can be used to protect pre-processed food products and polymeric packaging from oxidative stress related material deterioration. By comparing the two studied compounds, it was found that EDTA has a higher antioxidant potential than Irganox. To the best of our knowledge several studies have been carried out to understand the antioxidant potential of various natural and synthetic species, but EDTA and Irganox were not compared and investigated before. These additives can be used to protect pre-processed food products and polymeric packaging and prevent material deterioration caused by oxidative stress.

14.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175485

ABSTRACT

Aromatic isocyanides have gained a lot of attention lately as promising antifungal and anticancer drugs, as well as high-performance fluorescent analytical probes for the detection of toxic metals, such as mercury, even in vivo. Since this topic is relatively new and aromatic isocyanides possess unique photophysical properties, the understanding of structure-behavior relationships and the preparation of novel potentially biologically active derivatives are of paramount importance. Here, we report the photophysical characterization of 1,5-diisocyanonaphthalene (DIN) backed by quantum chemical calculations. It was discovered that DIN undergoes hydrolysis in certain solvents in the presence of oxonium ions. By the careful control of the reaction conditions for the first time, the nonsymmetric product 1-formamido-5-isocyanonaphthalene (ICNF) could be prepared. Contrary to expectations, the monoformamido derivative showed a significant solvatochromic behavior with a ~50 nm range from hexane to water. This behavior was explained by the enhanced H-bond-forming ability of the formamide group. The significance of the hydrolysis reaction is that the isocyano group is converted to formamide in living organisms. Therefore, ICNF could be a potential drug (for example, antifungal) and the reaction can be used as a model for the preparation of other nonsymmetric formamido-isocyanoarenes. In contrast to its relative 1-amino-5-iscyanonaphthalene (ICAN), ICNF is highly fluorescent in water, enabling the development of a fluorescent turnoff probe.


Subject(s)
Antifungal Agents , Fluorescent Dyes , Antifungal Agents/pharmacology , Hydrolysis , Fluorescent Dyes/chemistry , Water , Cyanides
15.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047177

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global concern since its outbreak in 2019, with one of the main solutions being vaccination. Altered glycosylation has been described in patients after SARS-CoV-2 infection, while the effect of vaccination on serum glycoproteins remained unexplored. In this study, total serum glycosylation was analyzed in patients after SARS-CoV-2 infection and/or mRNA vaccination in order to identify potential glycosylation-based alterations. Enzyme-linked immunosorbent assay was applied to identify post-COVID-19 and post-Vaccinated patients and rule out potential outliers. Serum samples were deglycosylated by PNGase F digestion, and the released glycans were fluorescently derivatized using procainamide labeling. Solid-phase extraction was used to purify the labeled glycans followed by the analysis of hydrophilic-interaction liquid chromatography with fluorescence and mass-spectrometric detection. Alterations of serum N-glycome in response to SARS-CoV-2 infection and mRNA vaccination were revealed by linear discriminant analysis.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , RNA, Messenger
16.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768483

ABSTRACT

A simplified, fast, and effective production method has been developed for the synthesis of manganese ferrite (MnFe2O4) magnetic nanoparticles (MNPs). In addition to the wide applicability of MnFe2O4 MNPs, this work also reports their application in DNA isolation for the first time. An ultrasonic-cavitation-assisted combustion method was applied in the synthesis of MnFe2O4 MNPs at different furnace temperatures (573 K, 623 K, 673 K, and 773 K) to optimize the particles' properties. It was shown that MnFe2O4 nanoparticles synthesized at 573 K consist of a spinel phase only with adequate size and zeta potential distributions and superparamagnetic properties. It was also demonstrated that superparamagnetic manganese ferrite nanoparticles bind DNA in buffer with a high NaCl concentration (2.5 M), and the DNA desorbs from the MNPs by decreasing the NaCl concentration of the elution buffer. This resulted in a DNA yield comparable to that of commercial DNA extraction products. Both the DNA concentration measurements and electrophoresis confirmed that a high amount of isolated bacterial plasmid DNA (pDNA) with adequate purity can be extracted with MnFe2O4 (573 K) nanoparticles by applying the DNA extraction method proposed in this article.


Subject(s)
Magnetite Nanoparticles , Sodium Chloride , Manganese Compounds , Ferric Compounds , DNA, Bacterial
17.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36361986

ABSTRACT

2,4-diaminotoluene (TDA) is one of the most important polyurethane precursors produced in large quantities by the hydrogenation of 2,4-dinitrotoluene using catalysts. Any improvement during the catalysis reaction is therefore of significant importance. Separation of the catalysts by filtration is cumbersome and causes catalyst loss. To solve this problem, we have developed magnetizable, amine functionalized ferrite supported palladium catalysts. Cobalt ferrite (CoFe2O4-NH2), nickel ferrite (NiFe2O4-NH2), and cadmium ferrite (CdFe2O4-NH2) magnetic catalyst supports were produced by a simple coprecipitation/sonochemical method. The nanospheres formed contain only magnetic (spinel) phases and show catalytic activity even without noble metals (palladium, platinum, rhodium, etc.) during the hydrogenation of 2,4-dinitrotoluene, 63% (n/n) conversion is also possible. By decorating the supports with palladium, almost 100% TDA selectivity and yield were ensured by using Pd/CoFe2O4-NH2 and Pd/NiFe2O4-NH2 catalysts. These catalysts possess highly favorable properties for industrial applications, such as easy separation from the reaction medium without loss by means of a magnetic field, enhanced reusability, and good dispersibility in aqueous medium. Contrary to non-functionalized supports, no significant leaching of precious metals could be detected even after four cycles.


Subject(s)
Nanospheres , Palladium , Hydrogenation , Palladium/chemistry , Cadmium , Amines , Catalysis
18.
Polymers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36236129

ABSTRACT

2,4- and 2,6-isomers of toluene diisocyanates (2,4-TDI and 2,6-TDI) are important raw materials in the polyurethane industry. These reactive compounds associate even under ambient conditions to form oligomers, changing the physicochemical properties of the raw material. Kinetically and thermodynamically relevant dimerization reactions were selected based on G3MP2B3 calculations from all possible dimers of phenyl isocyanate using these isocyanates as proxies. As it turned out, only the formation of the diazetidine-2,4-dione ring (11-dimer, uretdione) resulted in a species having an exothermic enthalpy of formation (-30.4 kJ/mol at 298.15 K). The oxazetidin-2-one ring product (1-2-dimer) had a slightly endothermic standard enthalpy of formation (37.2 kJ/mol at 298.15 K). The mechanism of the relevant cyclodimerization reactions was investigated further for 2,4-TDI and 2,6-TDI species using G3MP2B3 and SMD solvent model for diazetidine as well as oxazetidin-2-one ring formation. The formation of the uretdione ring structures, from the 2,4-TDI dimer with both NCO groups in the meta position for each phenyl ring and one methyl group in the para and one in the meta position, had the lowest-lying transition state (Δ#E0= 94.4 kJ/mol) in the gas phase. The one- and two-step mechanisms of the TDI cyclotrimerization were also studied based on the quasi-G3MP2B3 (qG3MP2B3) computational protocol. The one-step mechanism had an activation barrier as high as 149.0 kJ/mol, while the relative energies in the two-step mechanism were significantly lower for both transition states in the gas phase (94.7 and 60.5 kJ/mol) and in ODCB (87.0 and 54.0 kJ/mol).

19.
J Org Chem ; 87(19): 12909-12920, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36148484

ABSTRACT

The lipid peroxidation end product, 4-hydroxy-2-nonenal (HNE), is a secondary mediator of oxidative stress due to its strong ability to form adducts to the side chains of lysine, histidine, and cysteine residues (Cys) at increasing reactivities. This reaction can take place in various cellular environments and may be dependent on solvent. Moreover, approximately 10% of cysteine residues within the cells exist as the negatively charged cysteinate, which may also have a distinct reactivity toward HNE. In this study, quantum chemical calculations are used to investigate the reactivity of HNE toward Cys and cysteinate in three distinct solvent environments to mimic the aqueous, polar, and hydrophobic regions within the cell. Water enhances the reactivity of HNE to cysteine compared to that of the polar and hydrophobic solvents, and the reactivity of HNE is further augmented when Cys is first ionized to cysteinate. This is also confirmed by the transition state rate constant calculations. This study reveals the role of solvent polarity in these reactions and how cysteinate can account for the seemingly high reactivity of HNE toward Cys compared to other amino acid residues and demonstrates how a strong nucleophile can enhance the reactivity of an antioxidant analogue of the Cys residue.


Subject(s)
Cysteine , Histidine , Aldehydes/chemistry , Amino Acids/chemistry , Antioxidants , Cysteine/chemistry , Histidine/chemistry , Histidine/metabolism , Lipid Peroxidation , Lysine/chemistry , Oxidative Stress , Solvents , Water
20.
Polymers (Basel) ; 14(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080595

ABSTRACT

A wide variety of additives are used to improve specific characteristics of the final polymeric product. Antioxidant additives (AAs) can prevent oxidative stress and thus the damage of polymeric materials. In this work, the antioxidant potential and thus the applicability of Santowhite (SW) as synthetic and ascorbic acid (Asc) as natural AAs were explored by using computational tools. Two density functional theory (DFT) methods, M05-2X and M06-2X, have been applied in combination with the 6-311++G(2d,2p) basis set in gas phase. Three antioxidant mechanisms have been considered: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) have been computed for each potential hydrogen donor site. The results indicate that the antioxidant potential of Asc is higher than SW. Furthermore, some of the C-H bonds, depending on their position in the structures, are potent radical scavengers, but O-H groups are more prone to donate H-atoms to free radicals. Nonetheless, both additives can be potentially applied to safeguard common polymers and prohibit oxidative stress-induced material deterioration.

SELECTION OF CITATIONS
SEARCH DETAIL
...