Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Front Public Health ; 11: 1236558, 2023.
Article in English | MEDLINE | ID: mdl-37942251

ABSTRACT

Asbestos-related diseases still represent a major public health problem all over the world. Among them, malignant mesothelioma (MM) is a poor-prognosis cancer, arising from the serosal lining of the pleura, pericardium and peritoneum, triggered by asbestos exposure. Literature data suggest the key role of iron metabolism in the coating process leading to the formation of asbestos bodies, considered to be both protective and harmful. Two sample sets of individuals were taken into consideration, both residing in Broni or neighboring cities (Northwestern Italy) where an asbestos cement factory was active between 1932 and 1993. The present study aims to compare the frequency of six SNPs involved in iron trafficking, previously found to be related to protection/predisposition to MM after asbestos exposure, between 48 male subjects with documented asbestos exposure who died of MM and 48 male subjects who were exposed to asbestos but did not develop MM or other neoplastic respiratory diseases (Non-Mesothelioma Asbestos Exposed - NMAE). The same analysis was performed on 76 healthy male controls. The allelic and genotypic frequencies of a sub-group of 107 healthy Italian individuals contained in the 1000 genomes database were considered for comparison. PCR-multiplex amplification followed by SNaPshot mini-sequencing reaction was used. The findings presented in this study show that the allelic and genotypic frequencies for six SNP markers involved in iron metabolism/homeostasis and the modulation of tumor microenvironment are not significantly different between the two sample sets of MM and NMAE. Therefore, the SNPs here considered do not seem to be useful markers for individual susceptibility to mesothelioma. This finding is not in agreement with previous literature.


Subject(s)
Asbestos , Mesothelioma, Malignant , Mesothelioma , Occupational Exposure , Male , Humans , Polymorphism, Single Nucleotide , Mesothelioma/genetics , Asbestos/adverse effects , Iron/metabolism , Homeostasis , Tumor Microenvironment
2.
Front Mol Biosci ; 10: 1196328, 2023.
Article in English | MEDLINE | ID: mdl-37388248

ABSTRACT

Introduction: The fact that SARS-CoV-2, the coronavirus that caused COVID-19, can translocate within days of infection to the brain and heart and that the virus can survive for months is well established. However, studies have not investigated the crosstalk between the brain, heart, and lungs regarding microbiota that simultaneously co-inhabit these organs during COVID-19 illness and subsequent death. Given the significant overlap of cause of death from or with SARS-CoV-2, we investigated the possibility of a microbial fingerprint regarding COVID-19 death. Methods: In the current study, the 16S rRNA V4 region was amplified and sequenced from 20 COVID-19-positive and 20 non-COVID-19 cases. Nonparametric statistics were used to determine the resulting microbiota profile and its association with cadaver characteristics. When comparing non-COVID-19 infected tissues versus those infected by COVID-19, there is statistical differences (p < 0.05) between organs from the infected group only. Results: When comparing the three organs, microbial richness was significantly higher in non-COVID-19-infected tissues than infected. Unifrac distance metrics showed more variance between control and COVID-19 groups in weighted analysis than unweighted; both were statistically different. Unweighted Bray-Curtis principal coordinate analyses revealed a near distinct two-community structure: one for the control and the other for the infected group. Both unweighted and weighted Bray-Curtis showed statistical differences. Deblur analyses demonstrated Firmicutes in all organs from both groups. Discussion: Data obtained from these studies facilitated the defining of microbiome signatures in COVID-19 decedents that could be identified as taxonomic biomarkers effective for predicting the occurrence, the co-infections involved in its dysbiosis, and the evolution of the virus.

3.
Int J Legal Med ; 137(4): 1093-1096, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36939873

ABSTRACT

The furcate insertion of the umbilical cord is an uncommon abnormality, often asymptomatic, potentially dangerous, or lethal for the fetus and the mother. This report shows the case of a healthy 29-year-old patient, at 37 weeks of gestation, admitted to the hospital two days before the due date because of the appearance of uterine contractions; clinical exams were regular. The following day, no fetal movements were perceived, a cardiotocography was performed, showing the absence of fetal heartbeat. A dead fetus was delivered. Autopsy showed furcate insertion of the umbilical cord and the rupture of the umbilical vessel, which caused fetal hemorrhagic shock. Furcate insertion still remains mostly undiagnosed and rarely it can be identified prenatally (only three cases are reported in literature). Future research, mainly in forensic fields, could improve the knowledge about this condition, helping prenatal diagnosis and providing warnings that can prevent similar deaths in the future.


Subject(s)
Liability, Legal , Umbilical Cord , Pregnancy , Female , Humans , Adult , Fetal Death/etiology , Stillbirth , Fetus
4.
J Thorac Dis ; 15(12): 6555-6569, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249898

ABSTRACT

Background: In Italy the incidence of malignant mesothelioma (MM) among women is remarkably high, due to the several contexts in which women had been exposed to asbestos. However, very few studies in literature focus on the inorganic lung content in women. The aim of this retrospective, observational study is to investigate the asbestos lung burden, in terms of concentration, dimensions and type of asbestos, in 42 women who died from MM and had been non-occupationally exposed to asbestos during the activity of the asbestos-cement plant located in Broni (Pavia, Northern Italy) where mainly chrysotile, crocidolite and amosite were used. Methods: Lung samples taken during forensic autopsies have been digested using sodium hypochlorite and filtered through a cellulose-ester membrane. The filter was examined using a scanning electron microscope and the chemical composition of the fibers was analyzed using an electron dispersive spectroscopy. The number of detected inorganic fibers, asbestos fibers and asbestos bodies (ABs) were normalized to 1 gram of dry tissue. Results: In six samples no asbestos has been detected. Overall, the most represented kind of asbestos was amosite, followed by crocidolite, tremolite/actinolite asbestos and chrysotile. The concentration of all inorganic fibers was significantly higher in women with environmental and household exposures compared with those with only environmental exposure (P=0.025), as well as the concentration of asbestos fibers (P=0.019) and ABs (P=0.049). We found a significant correlation between the concentration of asbestos fibers and the duration of exposure (rho =0.413, P=0.008), as well as with the latency of MM (rho =0.427, P=0.005). The distance of the residential address from the factory and the time spent daily in contact with asbestos did not influence the lung asbestos burden. Conclusions: These results suggest the relevance of the lung clearance of asbestos, regarding mainly chrysotile. As a consequence, although scanning electron microscopy -energy dispersive X-ray spectroscopy (SEM-EDS) is considered the most reliable tool for assessing previous exposure to asbestos, its results should be interpreted with caution, especially in a legal context. In addition, our data confirm the relevance of environmental and household exposure in determining asbestos concentration in lungs and highlight the importance of household exposure.

5.
Cells ; 11(19)2022 10 04.
Article in English | MEDLINE | ID: mdl-36231087

ABSTRACT

Here, we aim to describe COVID-19 pathology across different tissues to clarify the disease's pathophysiology. Lungs, kidneys, hearts, and brains from nine COVID-19 autopsies were compared by using antibodies against SARS-CoV-2, macrophages-microglia, T-lymphocytes, B-lymphocytes, and activated platelets. Alzheimer's Disease pathology was also assessed. PCR techniques were used to verify the presence of viral RNA. COVID-19 cases had a short clinical course (0-32 days) and their mean age was 77.4 y/o. Hypoxic changes and inflammatory infiltrates were present across all tissues. The lymphocytic component in the lungs and kidneys was predominant over that of other tissues (p < 0.001), with a significantly greater presence of T-lymphocytes in the lungs (p = 0.020), which showed the greatest presence of viral antigens. The heart showed scant SARS-CoV-2 traces in the endothelium-endocardium, foci of activated macrophages, and rare lymphocytes. The brain showed scarce SARS-CoV-2 traces, prominent microglial activation, and rare lymphocytes. The pons exhibited the highest microglial activation (p = 0.017). Microthrombosis was significantly higher in COVID-19 lungs (p = 0.023) compared with controls. The most characteristic pathological features of COVID-19 were an abundance of T-lymphocytes and microthrombosis in the lung and relevant microglial hyperactivation in the brainstem. This study suggests that the long-term sequelae of COVID-19 derive from persistent inflammation, rather than persistent viral replication.


Subject(s)
COVID-19 , Thrombosis , Aged , Antigens, Viral , Brain/pathology , Humans , Kidney , Lung/pathology , Macrophages , RNA, Viral , SARS-CoV-2 , T-Lymphocytes , Thrombosis/pathology
6.
PLoS One ; 17(9): e0274401, 2022.
Article in English | MEDLINE | ID: mdl-36155553

ABSTRACT

The microbiota gut-brain-axis is a bidirectional circuit that links the neural, endocrine, and immunological systems with gut microbial communities. The gut microbiome plays significant roles in human mind and behavior, specifically pain perception, learning capacity, memory, and temperament. Studies have shown that disruptions in the gut microbiota have been associated with substance use disorders. The interplay of gut microbiota in substance abuse disorders has not been elucidated; however, postmortem microbiome profiles may produce promising avenues for future forensic investigations. The goal of the current study was to determine gut microbiome composition in substance abuse disorder cases using transverse colon tissues of 21 drug overdose versus 19 non-overdose-related cases. We hypothesized that postmortem samples of the same cause of death will reveal similar microbial taxonomic relationships. We compared microbial diversity profiles using amplicon-based sequencing of the 16S rRNA gene V4 hypervariable region. The results demonstrated that the microbial abundance in younger-aged cases were found to have significantly more operational taxonomic units than older cases. Using weighted UniFrac analysis, the influence of substances in overdose cases was found to be a significant factor in determining microbiome similarity. The results also revealed that samples of the same cause of death cluster together, showing a high degree of similarity between samples and a low degree of similarity among samples of different causes of death. In conclusion, our examination of human transverse colon microflora in decomposing remains extends emerging literature on postmortem microbial communities, which will ultimately contribute to advanced knowledge of human putrefaction.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Substance-Related Disorders , Aged , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , Postmortem Changes , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
7.
Front Med (Lausanne) ; 9: 863945, 2022.
Article in English | MEDLINE | ID: mdl-35492348

ABSTRACT

Pelvic organ prolapse (POP) affects many women and contributes significantly to a decrease in their quality of life causing urinary and/or fecal incontinence, sexual dysfunction and dyspareunia. To better understand POP pathophysiology, prevention and treatment, many researchers resorted to evaluating animal models. Regarding this example and because POP affects principally older women, our aim was to provide an overview of literature on the possible biomechanical changes that occur in the vaginas of animal models and their supportive structures as a consequence of aging. Papers published online from 2000 until May 2021 were considered and particular attention was given to articles reporting the effects of aging on the microscopic structure of the vagina and pelvic ligaments in animal models. Most research has been conducted on rodents because their vagina structure is well characterized and similar to those of humans; furthermore, they are cost effective. The main findings concern protein structures of the connective tissue, known as elastin and collagen. We have noticed a significant discordance regarding the quantitative changes in elastin and collagen related to aging, especially because it is difficult to detect them in animal specimens. However, it seems to be clear that aging affects the qualitative properties of elastin and collagen leading to aberrant forms which may affect the elasticity and the resilience of tissues leading to pelvic floor disease. The analysis of histological changes of pelvic floor tissues related to aging underlines how these topics appear to be not fully understood so far and that more research is necessary.

8.
Drug Test Anal ; 14(7): 1234-1243, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35195361

ABSTRACT

The collection of liquid biological matrices onto paper cards (dried matrix spots [DMS]) is becoming an alternative sampling strategy. The stability over time of molecules of interest for therapeutic, sport drug monitoring, and forensic toxicology on DMS has been recently investigated representing a reliable alternative to conventional analytical techniques. When a tampering of a urine sample in drug monitoring or doping control cases is suspected, it could be relevant to know whether genetic profiles useful for individual identification could be generated from urine samples spotted onto paper (dried urine spot [DUS]). To understand the influence of sex, storage conditions, and time on the quality and quantity of the DNA, five female and ten male urine samples were dispensed onto Whatman 903 paper and sampled after different storage conditions over time, from 1 to 12 weeks. Direct PCR was performed starting from 2-mm punches collected from each spot amplifying a panel of markers useful for individual identification. The female DUS stored in different conditions produced genetic profiles fully matching the reference samples. The same result was obtained for the male DUS but using urine 30X concentrated by centrifugation instead of the original samples. Our data show that this approach is valid for genetic individual identification of urine samples spotted onto paper cards up to 12 weeks after deposition and could be easily incorporated in anti-doping or drug screening protocols to help on the suspicion of evidence tampering or to solve questions on the reliability of samples collection.


Subject(s)
Body Fluids , Drug Monitoring , Dried Blood Spot Testing/methods , Drug Monitoring/methods , Female , Humans , Male , Reproducibility of Results , Specimen Handling
9.
Eur J Cell Biol ; 101(2): 151206, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35158302

ABSTRACT

Multipotent stem cells persist within the stromal vascular fraction (SVF) of adipose tissue during adulthood. These cells, commonly referred to as adipose-derived stromal cells (ASC), have been extensively investigated over the past years as a promising therapeutic tool based on their regenerative and immunomodulatory properties. However, how ASC might mirror the age-related alteration of the fat they reside in remains unclear. Herein, we show that inguinal adipose tissue in mice turns from brown/beige- to white-like with age and resident ASC readily mirror these changes both at mRNA and microRNA transcriptional level. Mechanistically, our data suggest that these brown/age-related changes in ASC transcription rely on changes in the activity of E2F1 and NFkB transcription factors.


Subject(s)
Adipose Tissue , Stromal Cells , Animals , Mice
10.
Data Brief ; 38: 107432, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34604485

ABSTRACT

Since the association of SARS-Cov-2 infection with Nervous System (NS) manifestations, we performed RNA-sequencing analysis in Frontal Cortex of COVID-19 positive or negative individuals and affected or not by Dementia individuals. We examined gene expression differences in individuals with COVID-19 and Dementia compared to Dementia only patients by collecting transcript counts in each sample and performing Differential Expression analysis. We found eleven genes satisfying our significance criteria, all of them being protein coding genes. These data are suitable for integration with supplemental samples and for analysis according to different individuals' classification. Also, differential expression evaluation may be implemented with other scientific purposes, such as research of unannotated genes, mRNA splicing and genes isoforms. The analysis of Differential Expressed genes in COVID-19 positive patients compared to non-COVID-19 patients is published in: S. Gagliardi, E.T. Poloni, C. Pandini, M. Garofalo, F. Dragoni, V. Medici, A. Davin, S.D. Visonà, M. Moretti, D. Sproviero, O. Pansarasa, A. Guaita, M. Ceroni, L. Tronconi, C. Cereda, Detection of SARS-CoV-2 genome and whole transcriptome sequencing in frontal cortex of COVID-19 patients., Brain. Behav. Immun. (2021). https://doi.org/10.1016/j.bbi.2021.05.012.

11.
Front Public Health ; 9: 678040, 2021.
Article in English | MEDLINE | ID: mdl-34354974

ABSTRACT

Biodurability is one of the main determinants of asbestos hazardousness for human health. Very little is known about the actual persistence of asbestos in lungs and its clearance, nor about differences in this regard between the different mineralogical types of asbestos. The aim of the present study was to evaluate the amount, the dimensional characteristics and the mineralogic kinds of asbestos in lungs (measured using SEM-EDS) of a series of 72 deceased subjects who were certainly exposed to asbestos (mainly crocidolite and chrysotile) during their life. Moreover, we investigated possible correlations between the lung burden of asbestos (in general and considering each asbestos type), as well as their dimension (length, width, and l/w ratio) and the duration of exposure, the latency- in case of malignant mesothelioma (MM), the survival and the time since the end of exposure. In 62.5% of subjects, asbestos burden in lungs was lower that the threshold considered demonstrative for occupational exposure. In 29.1% of cases no asbestos was found. Chrysotile was practically not detected. The mean length of asbestos fibers and the length to width ratio were significantly related to the duration of exposure to asbestos. No other statistically significant correlations were found between the amount and dimensional characteristics of asbestos (nor with the relative amount of each asbestos type) and the other chronological variables considered. In conclusion, it was pointed out that chrysotile can be completely removed from human lungs in <8 years and, instead, amphiboles persist much more time. The present results suggest, as well, that the finding of no asbestos in lungs cannot rule out the attribution of MM to asbestos (in particular, chrysotile) inhaled in an occupational setting. This point is of crucial importance from a legal point of view.


Subject(s)
Asbestos , Lung Neoplasms , Asbestos/adverse effects , Asbestos, Amphibole/adverse effects , Asbestos, Serpentine/adverse effects , Humans , Lung , Lung Neoplasms/chemically induced
13.
J Cell Sci ; 134(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34096605

ABSTRACT

Dysregulated immunity and widespread metabolic dysfunctions are the most relevant hallmarks of the passing of time over the course of adult life, and their combination at midlife is strongly related to increased vulnerability to diseases; however, the causal connection between them remains largely unclear. By combining multi-omics and functional analyses of adipose-derived stromal cells established from young (1 month) and midlife (12 months) mice, we show that an increase in expression of interferon regulatory factor 7 (IRF7) during adult life drives major metabolic changes, which include impaired mitochondrial function, altered amino acid biogenesis and reduced expression of genes involved in branched-chain amino acid (BCAA) degradation. Our results draw a new paradigm of aging as the 'sterile' activation of a cell-autonomous pathway of self-defense and identify a crucial mediator of this pathway, IRF7, as driver of metabolic dysfunction with age.


Subject(s)
Amino Acids, Branched-Chain , Interferon Regulatory Factor-7 , Adipose Tissue/metabolism , Aging/genetics , Animals , Interferon Regulatory Factor-7/metabolism , Mice , Stromal Cells/metabolism
14.
Brain Pathol ; 31(5): e12997, 2021 09.
Article in English | MEDLINE | ID: mdl-34145669

ABSTRACT

The actual role of SARS-CoV-2 in brain damage remains controversial due to lack of matched controls. We aim to highlight to what extent is neuropathology determined by SARS-CoV-2 or by pre-existing conditions. Findings of 9 Coronavirus disease 2019 (COVID-19) cases and 6 matched non-COVID controls (mean age 79 y/o) were compared. Brains were analyzed through immunohistochemistry to detect SARS-CoV-2, lymphocytes, astrocytes, endothelium, and microglia. A semi-quantitative scoring was applied to grade microglial activation. Thal-Braak stages and the presence of small vessel disease were determined in all cases. COVID-19 cases had a relatively short clinical course (0-32 days; mean: 10 days), and did not undergo mechanical ventilation. Five patients with neurocognitive disorder had delirium. All COVID-19 cases showed non-SARS-CoV-2-specific changes including hypoxic-agonal alterations, and a variable degree of neurodegeneration and/or pre-existent SVD. The neuroinflammatory picture was dominated by ameboid CD68 positive microglia, while only scant lymphocytic presence and very few traces of SARS-CoV-2 were detected. Microglial activation in the brainstem was significantly greater in COVID-19 cases (p = 0.046). Instead, microglial hyperactivation in the frontal cortex and hippocampus was clearly associated to AD pathology (p = 0.001), regardless of the SARS-CoV-2 infection. In COVID-19 cases complicated by delirium (all with neurocognitive disorders), there was a significant enhancement of microglia in the hippocampus (p = 0.048). Although higher in cases with both Alzheimer's pathology and COVID-19, cortical neuroinflammation is not related to COVID-19 per se but mostly to pre-existing neurodegeneration. COVID-19 brains seem to manifest a boosting of innate immunity with microglial reinforcement, and adaptive immunity suppression with low number of brain lymphocytes probably related to systemic lymphopenia. Thus, no neuropathological evidence of SARS-CoV-2-specific encephalitis is detectable. The microglial hyperactivation in the brainstem, and in the hippocampus of COVID-19 patients with delirium, appears as a specific topographical phenomenon, and probably represents the neuropathological basis of the "COVID-19 encephalopathic syndrome" in the elderly.


Subject(s)
COVID-19/pathology , Dementia/virology , Microglia/pathology , Nervous System Diseases/virology , Aged , Aged, 80 and over , Astrocytes/pathology , Brain/pathology , COVID-19/psychology , Case-Control Studies , Dementia/pathology , Dementia/psychology , Female , Humans , Male , Nervous System Diseases/pathology , Nervous System Diseases/psychology , SARS-CoV-2/isolation & purification
15.
Brain Behav Immun ; 97: 13-21, 2021 10.
Article in English | MEDLINE | ID: mdl-34022369

ABSTRACT

SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to characterize the transcriptional signature. Our data showed that SARS-CoV-2 could be detected by ddPCR in 8 (88%) of 9 examined samples while by qRT-PCR in one case only (11%). Transcriptomic analysis revealed that 11 genes (10 mRNAs and 1 lncRNA) were differential expressed when frontal cortex of COVID-19 patients were compared to controls. These genes fall into categories including hypoxia, hemoglobin-stabilizing protein, hydrogen peroxide processes. This work demonstrated that the quantity of viral RNA in frontal cortex is minimal and it can be detected only with a very sensitive method (ddPCR). Thus, it is likely that SARS-CoV-2 does not actively infect and replicate in the brain; its topography within encephalic structures remains uncertain. Moreover, COVID-19 may have a role on brain gene expression, since we observed an important downregulation of genes associated to hypoxia inducting factor system (HIF) that may inhibit the capacity of defense system during infection and oxigen deprivation, showing that hypoxia, well known multi organ condition associated to COVID-19, also marked the brain.


Subject(s)
COVID-19 , SARS-CoV-2 , Frontal Lobe , Humans , Transcriptome , Exome Sequencing
16.
Intractable Rare Dis Res ; 10(2): 136-141, 2021 May.
Article in English | MEDLINE | ID: mdl-33996361

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition with soft tissue progressive ossification, leading to severe disability. We describe a 27-years-old female affected by FOP who died after a fall. An autopsy was performed. Upper and lower extremities resulted in fixed flexion, with kyphoscoliosis of the spine and chest wall deformity. Moreover, a cranial fracture was pointed out. At histology, atypical abundance of corpora amylacea in gray matter was observed. In a sample of macroscopically non-affected muscular tissue, small areas with necrosis of myocytes and hyperplasia of fibroblasts were seen in light microscopy, with intracellular inorganic dystrophic inclusions in transmission electron microscopy. Thyroid gland histology showed diffuse lymphocytic infiltration. Postmortem examination of FOP patients provided precious information about involvement of other tissues, suggesting an initial and widespread inflammatory/dystrophic phase, to be further investigated, because it might reveal new insights about a FOP mutation cascade.

17.
Article in English | MEDLINE | ID: mdl-33669843

ABSTRACT

Increased mortality due to malignant mesothelioma has been demonstrated by several epidemiologic studies in the area around Broni (a small town in Lombardy, northern Italy), where a factory producing asbestos cement was active between 1932 and 1993. Until now, the inorganic fiber burden in lungs has not been investigated in this population. The aim of this study is to assess the lung fiber burden in 72 individuals with previous occupational and/or anthropogenic environmental exposure to asbestos during the activity of an important asbestos cement factory. Inorganic fiber lung burden was assessed in autoptic samples taken from individuals deceased from asbestos-related diseases using a scanning electron microscope equipped with an energy-dispersive spectrometer. Significant differences in the detected amount of asbestos were pointed out among the three types of exposure. In most lung samples taken from patients who died of mesothelioma, very little asbestos (or, in some cases, no fibers) was found. Such subjects showed a significantly lower median amount of asbestos as compared to asbestosis. Almost no chrysotile was detected in the examined samples. Overall, crocidolite was the most represented asbestos, followed by amosite, tremolite/actinolite asbestos, and anthophyllite asbestos. There were significant differences in the amount of crocidolite and amosite fibers according to the kind of exposure. Overall, these findings provide novel insights into the link between asbestos exposure and mesothelioma, as well as the different impacts of the various types of asbestos on human health in relation to their different biopersistences in the lung microenvironment.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma , Occupational Exposure , Environmental Exposure , Humans , Italy/epidemiology , Lung , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Mesothelioma/chemically induced , Mesothelioma/epidemiology , Occupational Exposure/adverse effects , Tumor Microenvironment
18.
Forensic Sci Med Pathol ; 17(2): 262-270, 2021 06.
Article in English | MEDLINE | ID: mdl-33582936

ABSTRACT

Italy and the United States are two of the countries most affected by SARS-CoV-2 (COVID-19), with more than 240,760 confirmed cases in Italy and 2,699,658 in the United States (as of July 2, 2020). The current COVID-19 pandemic has led to substantial changes in many fields of medicine, specifically in the forensic discipline. Medicolegal activities related to conducting autopsies have been largely affected by the COVID-19 pandemic. Postmortem examinations are generally discouraged by government regulations due to the risk of spreading the disease further through the handling and dissection of bodies from patients who succumbed to COVID-19 infection. There is a paucity of data regarding the persistence of SARS-CoV-2 in bodies, as well as concerning the reliability of swabbing methods in human remains. On the other hand, the autopsy is an essential tool to provide necessary information about the pathophysiology of the disease that presents useful clinical and epidemiological insights. On this basis, we aim to address issues concerning general medical examiner/coroner organization, comparing the Italian and American systems. We also discuss the pivotal roles of forensic pathologists in informing infectious disease surveillance. Finally, we focus on the impact of COVID-19 emergency on medicolegal practices in Italy and the United States, as well as the responses of the forensic scientific community to the emerging concerns related to the pandemic. We believe that stronger efforts by authorities are necessary to facilitate completing postmortem examinations, as data derived from such assessments are expected to be paramount to improving patient management and disease prevention.


Subject(s)
COVID-19/epidemiology , Coroners and Medical Examiners , Professional Role , Autopsy , Communicable Diseases/epidemiology , Death Certificates , Disease Transmission, Infectious/prevention & control , Epidemiological Monitoring , Humans , Infection Control/standards , Italy/epidemiology , Pandemics , United States/epidemiology
19.
J Alzheimers Dis ; 79(1): 25-30, 2021.
Article in English | MEDLINE | ID: mdl-33216037

ABSTRACT

Nasu-Hakola disease is a rare autosomal recessive disorder associated to mutations in TREM2 and DAP12 genes, neuropathologically characterized by leukoencephalopathy with axonal spheroids. We report the neuropathologic findings of a 51-year-old female with a homozygous mutation (Q33X) of TREM2 gene. Beside severe cerebral atrophy and hallmarks of Nasu-Hakola disease, significant Alzheimer's disease lesions were present. Neurofibrillary changes showed an atypical topographic distribution being severe at spots in the neocortex while sparing the mesial temporal structures. Our finding suggests that TREM2 genetic defects may favor Alzheimer's disease pathology with neurofibrillary changes not following the hierarchical staging of cortical involvement identified by Braak.


Subject(s)
Brain/pathology , Lipodystrophy/pathology , Neurofibrillary Tangles/pathology , Osteochondrodysplasias/pathology , Plaque, Amyloid/pathology , Subacute Sclerosing Panencephalitis/pathology , Alzheimer Disease/pathology , Brain/diagnostic imaging , Entorhinal Cortex/diagnostic imaging , Entorhinal Cortex/pathology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Lipodystrophy/diagnostic imaging , Lipodystrophy/genetics , Membrane Glycoproteins/genetics , Middle Aged , Neocortex/diagnostic imaging , Neocortex/pathology , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis/diagnostic imaging , Subacute Sclerosing Panencephalitis/genetics , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology
20.
Front Microbiol ; 11: 569630, 2020.
Article in English | MEDLINE | ID: mdl-33363519

ABSTRACT

Human thanatomicrobiota studies have shown that microorganisms inhabit and proliferate externally and internally throughout the body and are the primary mediators of putrefaction after death. Yet little is known about the source and diversity of the thanatomicrobiome or the underlying factors leading to delayed decomposition exhibited by reproductive organs. The use of the V4 hypervariable region of bacterial 16S rRNA gene sequences for taxonomic classification ("barcoding") and phylogenetic analyses of human postmortem microbiota has recently emerged as a possible tool in forensic microbiology. The goal of this study was to apply a 16S rRNA barcoding approach to investigate variation among different organs, as well as the extent to which microbial associations among different body organs in human cadavers can be used to predict forensically important determinations, such as cause and time of death. We assessed microbiota of organ tissues including brain, heart, liver, spleen, prostate, and uterus collected at autopsy from criminal casework of 40 Italian cadavers with times of death ranging from 24 to 432 h. Both the uterus and prostate had a significantly higher alpha diversity compared to other anatomical sites, and exhibited a significantly different microbial community composition from non-reproductive organs, which we found to be dominated by the bacterial orders MLE1-12, Saprospirales, and Burkholderiales. In contrast, reproductive organs were dominated by Clostridiales, Lactobacillales, and showed a marked decrease in relative abundance of MLE1-12. These results provide insight into the observation that the uterus and prostate are the last internal organs to decay during human decomposition. We conclude that distinct community profiles of reproductive versus non-reproductive organs may help guide the application of forensic microbiology tools to investigations of human cadavers.

SELECTION OF CITATIONS
SEARCH DETAIL
...