Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(2): 677-694, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38193434

ABSTRACT

We present the development and implementation of relativistic coupled cluster linear response theory (CC-LR), which allows the determination of molecular properties arising from time-dependent or time-independent electric, magnetic, or mixed electric-magnetic perturbations (within a common gauge origin for the magnetic properties) as well as taking into account the finite lifetime of excited states in the framework of damped response theory. We showcase our implementation, which is capable to offload the computationally intensive tensor contractions characteristic of coupled cluster theory onto graphical processing units, in the calculation of (a) frequency-(in)dependent dipole-dipole polarizabilities of IIB atoms and selected diatomic molecules, with a particular emphasis on the calculation of valence absorption cross sections for the I2 molecule; (b) indirect spin-spin coupling constants for benchmark systems such as the hydrogen halides (HX, X = F-I) as well the H2Se-H2O dimer as a prototypical system containing hydrogen bonds; and (c) optical rotations at the sodium D line for hydrogen peroxide analogues (H2Y2, Y = O, S, Se, Te). Thanks to this implementation, we are able to show the similarities in performance, but often the significant discrepancies, between CC-LR and approximate methods such as density functional theory. Comparing standard CC response theory with the flavor based upon the equation of motion formalism, we find that for valence properties such as polarizabilities, the two frameworks yield very similar results across the periodic table as found elsewhere in the literature; for properties that probe the core region, such as spin-spin couplings, on the other hand, we show a progressive differentiation between the two as relativistic effects become more important. Our results also suggest that as one goes down the periodic table, it may become increasingly difficult to measure pure optical rotation at the sodium D line due to the appearance of absorbing states.

2.
J Chem Theory Comput ; 19(24): 9248-9259, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38079602

ABSTRACT

We present the implementation of quadratic response theory based upon the relativistic equation-of-motion coupled cluster method. We showcase our implementation, whose generality allows us to consider both time-dependent and time-independent electric and magnetic perturbations, by considering the static and frequency-dependent hyperpolarizability of hydrogen halides (HX, X = F-At), providing comprehensive insights into their electronic response characteristics. Additionally, we evaluated the Verdet constant for noble gases Xe and Rn and discussed the relative importance of relativistic and electron correlation effects for these magneto-optical properties. Finally, we calculate the two-photon absorption cross sections of transition [ns1S0 → (n + 1)s1S0] of Ga+ and In+, which are suggested as candidates for new ion clocks. As our implementation allows for the use of nonrelativistic Hamiltonians as well, we have compared our EOM-QRCC results to the QR-CC implementation in the DALTON code and show that the differences between CC and EOMCC response are in general smaller than 5% for the properties considered. Collectively, the results underscore the versatility of our implementation and its potential as a benchmark tool for other approximated models, such as density functional theory for higher-order properties.

3.
J Phys Chem A ; 127(44): 9244-9257, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37906956

ABSTRACT

The Resolution of Identity (RI) technique has been employed to speed up the use of hybrid exchange-correlation (xc) functionals at the TDDFT level using the Hybrid Diagonal Approximation. The RI has been implemented within the polTDDFT algorithm (a complex damped polarization method) in the AMS/ADF suite of programs. A speedup factor of 30 has been obtained with respect to a previous numerical implementation, albeit with the same level of accuracy. Comparison of TDDFT simulations with the experimental photoabsorption spectra of the cluster series Au8n+4(SR)4n+8(n = 3-6; R = C6H5) showed the excellent accuracy and efficiency of the method. Results were compared with those obtained via the more simplified and computationally cheaper TDDFT+TB and sTDDFT methods. The present method represents an accurate as well as computationally affordable approach to predict photoabsorption spectra of complex species, realizing an optimal compromise between accuracy and computational efficiency, and is suitable for applications to large metal clusters with sizes up to several hundreds of atoms.

4.
J Chem Theory Comput ; 19(17): 5958-5976, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37594901

ABSTRACT

We report an all-electron, atomic orbital (AO)-based, two-component (2C) implementation of the GW approximation (GWA) for closed-shell molecules. Our algorithm is based on the space-time formulation of the GWA and uses analytical continuation (AC) of the self-energy, and pair-atomic density fitting (PADF) to switch between AO and auxiliary basis. By calculating the dynamical contribution to the GW self-energy at a quasi-one-component level, our 2C-GW algorithm is only about a factor of 2-3 slower than in the scalar relativistic case. Additionally, we present a 2C implementation of the simplest vertex correction to the self-energy, the statically screened G3W2 correction. Comparison of first ionization potentials (IPs) of a set of 67 molecules with heavy elements (a subset of the SOC81 set) calculated with our implementation against results from the WEST code reveals mean absolute deviations (MAD) of around 70 meV for G0W0@PBE and G0W0@PBE0. We check the accuracy of our AC treatment by comparison to full-frequency GW calculations, which shows that in the absence of multisolution cases, the errors due to AC are only minor. This implies that the main sources of the observed deviations between both implementations are the different single-particle bases and the pseudopotential approximation in the WEST code. Finally, we assess the performance of some (partially self-consistent) variants of the GWA for the calculation of first IPs by comparison to vertical experimental reference values. G0W0@PBE0 (25% exact exchange) and G0W0@BHLYP (50% exact exchange) perform best with mean absolute deviations (MAD) of about 200 meV. Explicit treatment of spin-orbit effects at the 2C level is crucial for systematic agreement with experiment. On the other hand, eigenvalue-only self-consistent GW (evGW) and quasi-particle self-consistent GW (qsGW) significantly overestimate the IPs. Perturbative G3W2 corrections increase the IPs and therefore improve the agreement with experiment in cases where G0W0 alone underestimates the IPs. With a MAD of only 140 meV, 2C-G0W0@PBE0 + G3W2 is in best agreement with the experimental reference values.

5.
Phys Chem Chem Phys ; 25(28): 19266-19268, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37265381

ABSTRACT

Correction for 'Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells' by Jelena Belic et al., Phys. Chem. Chem. Phys., 2022, 24, 197-210, https://doi.org/10.1039/D1CP04218A.

6.
J Chem Theory Comput ; 19(5): 1499-1516, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36787494

ABSTRACT

Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. One posibility is to use global density fitting (DF), but in this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favorable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. After having thus obtained a reliable self-consistent field solution, we then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater type orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-ζ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol, respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of large, non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.

7.
J Chem Phys ; 158(5): 054115, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754801

ABSTRACT

Localized molecular orbitals are often used for the analysis of chemical bonds, but they can also serve to efficiently and comprehensibly compute linear response properties. While conventional canonical molecular orbitals provide an adequate basis for the treatment of excited states, a chemically meaningful identification of the different excited-state processes is difficult within such a delocalized orbital basis. In this work, starting from an initial set of supermolecular canonical molecular orbitals, we provide a simple one-step top-down embedding procedure for generating a set of orbitals, which are localized in terms of the supermolecule but delocalized over each subsystem composing the supermolecule. Using an orbital partitioning scheme based on such sets of localized orbitals, we further present a procedure for the construction of local excitations and charge-transfer states within the linear response framework of time-dependent density functional theory (TDDFT). This procedure provides direct access to approximate diabatic excitation energies and, under the Tamm-Dancoff approximation, also their corresponding electronic couplings-quantities that are of primary importance in modeling energy transfer processes in complex biological systems. Our approach is compared with a recently developed diabatization procedure based on subsystem TDDFT using projection operators, which leads to a similar set of working equations. Although both of these methods differ in the general localization strategies adopted and the type of basis functions (Slaters vs Gaussians) employed, an overall decent agreement is obtained.

8.
Photosynth Res ; 156(1): 39-57, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35988131

ABSTRACT

Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using subsystem Density Functional Theory over the classical [Formula: see text]s MD trajectory we look explicitly into the excitation energies of the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.


Subject(s)
Chlorophyta , Light-Harvesting Protein Complexes , Light-Harvesting Protein Complexes/metabolism , Chlorophyll/chemistry , Molecular Dynamics Simulation , Chlorophyta/metabolism , Plants/metabolism
9.
J Chem Theory Comput ; 18(11): 6779-6793, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36201788

ABSTRACT

The GW-Bethe-Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on large molecules. We herein show that eigenvalue-only self-consistency can lead to an unfaithful description of some excitonic states for chlorophyll dimers while the qsGW-BSE vertical excitation energies (VEEs) are in excellent agreement with spectroscopic experiments for chlorophyll monomers and dimers measured in the gas phase. Furthermore, VEEs from time-dependent density functional theory calculations tend to disagree with experimental values and using different range-separated hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use the new qsGW-BSE implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons. Using more than 11,000 (6000) basis functions, the calculation could be completed in less than 5 (2) days on a single modern compute node. In agreement with previous TD-DFT calculations using RSH kernels on models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters in the low-energy spectrum of the hexameric complex. Earlier works with RSH kernels have demonstrated that the protein environment facilitates the experimentally observed interchromophoric charge transfer. Therefore, future research will need to combine correlation effects beyond TD-DFT with an explicit treatment of environmental electrostatics.


Subject(s)
Chlorophyll , Electrons , Density Functional Theory
10.
J Chem Inf Model ; 62(22): 5525-5535, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36314636

ABSTRACT

The continuous improvement of computer architectures allows for the simulation of molecular systems of growing sizes. However, such calculations still require the input of initial structures, which are also becoming increasingly complex. In this work, we present CAT, a Compound Attachment Tool (source code available at https://github.com/nlesc-nano/CAT) and Python package for the automatic construction of composite chemical compounds, which supports the functionalization of organic, inorganic, and hybrid organic-inorganic materials. The CAT workflow consists in defining the anchoring sites on the reference material, usually a large molecular system denoted as a scaffold, and on the molecular species that are attached to it, i.e., the ligands. Usually, ligands are pre-optimized in a conformation biased toward more linear structures to minimize interligand(s) steric interactions, a bias that is important when multiple ligands are attached onto the scaffold. The resulting superstructure(s) are then stored in various formats that can be used afterward in quantum chemical calculations or classical force field-based simulations.


Subject(s)
Software , Ligands , Computer Simulation , Molecular Conformation , Workflow
11.
J Chem Phys ; 157(8): 084104, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36049992

ABSTRACT

Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization, and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations that are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark molecules, such as ß-carotene, and compared to results obtained with pure and range-separated exchange-correlation functionals. We then demonstrate the efficiency of the approach by considering a computationally challenging heme variation. Overall, we find that the vibrational frequencies and excited-state properties (energies and gradients) that are needed to simulate the spectra are reasonably accurate and suitable for interpretation of experiments. We can therefore recommend DFTB as a fast computational method to interpret resonance Raman spectra.


Subject(s)
Quantum Theory , Vibration , Computer Simulation , Density Functional Theory , Spectrum Analysis, Raman
12.
J Chem Phys ; 156(22): 224108, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35705406

ABSTRACT

The high computational scaling with the basis set size and the number of correlated electrons is a bottleneck limiting applications of coupled cluster algorithms, in particular for calculations based on two- or four-component relativistic Hamiltonians, which often employ uncontracted basis sets. This problem may be alleviated by replacing canonical Hartree-Fock virtual orbitals by natural orbitals (NOs). In this paper, we describe the implementation of a module for generating NOs for correlated wavefunctions and, in particular, second order Møller-Plesset perturbation frozen natural orbitals (MP2FNOs) as a component of our novel implementation of relativistic coupled cluster theory for massively parallel architectures [Pototschnig et al. J. Chem. Theory Comput. 17, 5509, (2021)]. Our implementation can manipulate complex or quaternion density matrices, thus allowing for the generation of both Kramers-restricted and Kramers-unrestricted MP2FNOs. Furthermore, NOs are re-expressed in the parent atomic orbital (AO) basis, allowing for generating coupled cluster singles and doubles NOs in the AO basis for further analysis. By investigating the truncation errors of MP2FNOs for both the correlation energy and molecular properties-electric field gradients at the nuclei, electric dipole and quadrupole moments for hydrogen halides HX (X = F-Ts), and parity-violating energy differences for H2Z2 (Z = O-Se)-we find MP2FNOs accelerate the convergence of the correlation energy in a roughly uniform manner across the Periodic Table. It is possible to obtain reliable estimates for both energies and the molecular properties considered with virtual molecular orbital spaces truncated to about half the size of the full spaces.

13.
ChemSusChem ; 15(15): e202200594, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35638151

ABSTRACT

Dye-sensitized photoelectrochemical cells are promising devices in solar energy conversion. However, several limitations still have to be addressed, such as the major loss pathway through charge recombination at the dye-semiconductor interface. Charge separating dyes constructed as push-pull systems can increase the spatial separation of electron and hole, decreasing the recombination rate. Here, a family of dyes, consisting of polyphenylamine donors, fluorene bridges, and perylene monoimide acceptors, was investigated in silico using a combination of semi-empirical nuclear dynamics and a quantum propagation of photoexcited electron and hole. To optimize the charge separation, several molecular design strategies were investigated, including modifying the donor molecule, increasing the π-bridge length, and decoupling the molecular components through steric effects. The combination of a triphenylamine donor, using an extended 2-fluorene π-bridge, and decoupling the different components by steric hindrance from side groups resulted in a dye with significantly improved charge separation properties in comparison to the original supramolecular complex.


Subject(s)
Solar Energy , Amines/chemistry , Coloring Agents/chemistry , Fluorenes , Sunlight
14.
J Chem Phys ; 156(7): 074102, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35183094

ABSTRACT

In the new field of quantum plasmonics, plasmonic excitations of silver and gold nanoparticles are utilized to manipulate and control light-matter interactions at the nanoscale. While quantum plasmons can be described with atomistic detail using Time-Dependent Density Functional Theory (DFT), such studies are computationally challenging due to the size of the nanoparticles. An efficient alternative is to employ DFT without approximations only for the relatively fast ground state calculations and use tight-binding approximations in the demanding linear response calculations. In this work, we use this approach to investigate the nature of plasmonic excitations under the variation of the separation distance between two nanoparticles. We thereby provide complementary characterizations of these excitations in terms of Kohn-Sham single-orbital transitions, intrinsic localized molecular fragment orbitals, scaling of the electron-electron interactions, and probability of electron tunneling between monomers.

15.
J Chem Theory Comput ; 18(2): 776-794, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35029988

ABSTRACT

We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.

16.
Phys Chem Chem Phys ; 24(1): 197-210, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34878470

ABSTRACT

Sustainable solutions for hydrogen production, such as dye-sensitized photoelectrochemical cells (DS-PEC), rely on the fundamental properties of its components whose modularity allows for their separate investigation. In this work, we design and execute a high-throughput scheme to tune the ground state oxidation potential (GSOP) of perylene-type dyes by functionalizing them with different ligands. This allows us to identify promising candidates which can then be used to improve the cell's efficiency. First, we investigate the accuracy of different theoretical approaches by benchmarking them against experimentally determined GSOPs. We test different methods to calculate the vertical oxidation potential, including GW with different levels of self-consistency, Kohn-Sham (KS) orbital energies and total energy differences. We find that there is little difference in the performance of these methods. However, we show that it is crucial to take into account solvent effects as well as the structural relaxation of the dye after oxidation. Other thermodynamic contributions are negligible. Based on this benchmark, we decide on an optimal strategy, balancing computational cost and accuracy, to screen more than 1000 dyes and identify promising candidates which could be used to construct more robust DS-PECs.

17.
Phys Chem Chem Phys ; 23(39): 22330-22343, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34596656

ABSTRACT

We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF+ and YbF- species, respectively. From these calculations we predict Ω = 1/2, 3/2 states, arising from the 4f13σ26s, 4f145d1/6p1, and 4f135d1σ16s configurations to be able to interact as they appear in the same energy range around the ground-state equilibrium geometry. As these states are generated from different sectors of Fock space, they are almost orthogonal and provide complementary descriptions of parts of the excited state manifold. To obtain a comprehensive picture, we introduce a simple adiabatization model to extract energies of interacting Ω = 1/2, 3/2 states that can be compared to experimental observations.

18.
Front Chem ; 9: 736591, 2021.
Article in English | MEDLINE | ID: mdl-34540804

ABSTRACT

Low-order scaling GW implementations for molecules are usually restricted to approximations with diagonal self-energy. Here, we present an all-electron implementation of quasiparticle self-consistent GW for molecular systems. We use an efficient algorithm for the evaluation of the self-energy in imaginary time, from which a static non-local exchange-correlation potential is calculated via analytical continuation. By using a direct inversion of iterative subspace method, fast and stable convergence is achieved for almost all molecules in the GW100 database. Exceptions are systems which are associated with a breakdown of the single quasiparticle picture in the valence region. The implementation is proven to be starting point independent and good agreement of QP energies with other codes is observed. We demonstrate the computational efficiency of the new implementation by calculating the quasiparticle spectrum of a DNA oligomer with 1,220 electrons using a basis of 6,300 atomic orbitals in less than 4 days on a single compute node with 16 cores. We use then our implementation to study the dependence of quasiparticle energies of DNA oligomers consisting of adenine-thymine pairs on the oligomer size. The first ionization potential in vacuum decreases by nearly 1 electron volt and the electron affinity increases by 0.4 eV going from the smallest to the largest considered oligomer. This shows that the DNA environment stabilizes the hole/electron resulting from photoexcitation/photoattachment. Upon inclusion of the aqueous environment via a polarizable continuum model, the differences between the ionization potentials reduce to 130 meV, demonstrating that the solvent effectively compensates for the stabilizing effect of the DNA environment. The electron affinities of the different oligomers are almost identical in the aqueous environment.

19.
J Chem Theory Comput ; 17(9): 5509-5529, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34370471

ABSTRACT

In this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset. In the current work, we thereby focus on exact two-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as the starting point, but it is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program.

20.
Phys Chem Chem Phys ; 23(33): 17929-17938, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34379064

ABSTRACT

Metal nanoclusters can be synthesized in various sizes and shapes and are typically protected with ligands to stabilize them. These ligands can also be used to tune the plasmonic properties of the clusters as the absorption spectrum of a protected cluster can be significantly altered compared to the bare cluster. In this paper, we computationally investigate the influence of thiolate ligands on the plasmonic intensity for silver, gold and alloy clusters. Using time-dependent density functional theory with tight-binding approximations, TD-DFT+TB, we show that this level of theory can reproduce the broad experimental spectra of Au144(SR)60 and Ag53Au91(SR)60 (R = CH3) compounds with satisfactory agreement. As TD-DFT+TB does not depend on atom-type parameters we were able to apply this approach on large ligand-protected clusters with various compositions. With these calculations we predict that the effect of ligands on the absorption can be a quenching as well as an enhancement. We furthermore show that it is possible to unambiguously identify the plasmonic peaks by the scaled Coulomb kernel technique and explain the influence of ligands on the intensity (de-)enhancement by analyzing the plasmonic excitations in terms of the dominant orbital contributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...