Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Metabolites ; 13(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623902

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been linked to changes in amino acid (AA) levels. The objective of the current study was to examine the relationship between MRI parameters that reflect inflammation and fibrosis and plasma AA concentrations in NAFLD patients. Plasma AA levels of 97 NAFLD patients from the MAST4HEALTH study were quantified with liquid chromatography. Medical, anthropometric and lifestyle characteristics were collected and biochemical parameters, as well as inflammatory and oxidative stress biomarkers, were measured. In total, subjects with a higher MRI-proton density fat fraction (MRI-PDFF) exhibited higher plasma AA levels compared to subjects with lower PDFF. The concentrations of BCAAs (p-Value: 0.03), AAAs (p-Value: 0.039), L-valine (p-Value: 0.029), L-tyrosine (p-Value: 0.039) and L-isoleucine (p-Value: 0.032) were found to be significantly higher in the higher PDFF group compared to lower group. Plasma AA levels varied according to MRI-PDFF. Significant associations were also demonstrated between AAs and MRI-PDFF and MRI-cT1, showing the potential utility of circulating AAs as diagnostic markers of NAFLD.

4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012229

ABSTRACT

Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine angiogenic activity and endothelial colony forming cells (ECFC). Two hundred and forty-three subjects from the TELARTA study were classified according to the presence of clinical atherosclerotic disease. ASCVD severity was assessed by the number of involved vascular territories. Flow cytometry was used to numerate circulating progenitor cells (PC) expressing CD34 and those co-expressing CD45, CD34, and KDR. Peripheral blood mononuclear cells ex vivo culture methods were used to determine ECFC and Colony Forming Unit- endothelial cells (CFU-EC). The ECFC subpopulation was analyzed for proliferation, senescence, and vasculogenic properties. Plasma levels of IL-6 and VEGF-A were measured using Cytokine Array. Despite an increased number of circulating precursors in ASCVD patients, ASCVD impaired the colony forming capacity and the angiogenic properties of ECFC in a severity-dependent manner. Alteration of ECFC was associated with increased senescent phenotype and IL-6 levels. Our study demonstrates a decrease in ECFC repair capacity according to ASCVD severity in an inflammatory and senescence-associated secretory phenotype context.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Endothelial Progenitor Cells , Cells, Cultured , Humans , Interleukin-6 , Leukocytes, Mononuclear , Neovascularization, Physiologic
5.
Aging (Albany NY) ; 14(6): 2524-2536, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347084

ABSTRACT

The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer's disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed using the elastic net machine learning methodology. An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related genes are implicated in neurological diseases. In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD.


Subject(s)
Alzheimer Disease , Vascular Endothelial Growth Factor A , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics
6.
Article in English | MEDLINE | ID: mdl-35055797

ABSTRACT

Whereas the etiology of non-alcoholic fatty liver disease (NAFLD) is complex, the role of nutrition as a causing and preventive factor is not fully explored. The aim of this study is to associate dietary patterns with magnetic resonance imaging (MRI) parameters in a European population (Greece, Italy, and Serbia) affected by NAFLD. For the first time, iron-corrected T1 (cT1), proton density fat fraction (PDFF), and the liver inflammation fibrosis score (LIF) were examined in relation to diet. A total of 97 obese patients with NAFLD from the MAST4HEALTH study were included in the analysis. A validated semi-quantitative food frequency questionnaire (FFQ) was used to assess the quality of diet and food combinations. Other variables investigated include anthropometric measurements, total type 2 diabetes risk, physical activity level (PAL), and smoking status. Principal component analysis (PCA) was performed to identify dietary patterns. Six dietary patterns were identified, namely "High-Sugar", "Prudent", "Western", "High-Fat and Salt", "Plant-Based", and "Low-Fat Dairy and Poultry". The "Western" pattern was positively associated with cT1 in the unadjusted model (beta: 0.020, p-value: 0.025) and even after adjusting for age, sex, body mass index (BMI), PAL, smoking, the center of the study, and the other five dietary patterns (beta: 0.024, p-value: 0.020). On the contrary, compared with low-intake patients, those with medium intake of the "Low-Fat Dairy and Poultry" pattern were associated with lower values of cT1, PDFF, and LIF. However, patients with a "Low-Fat Dairy and Poultry" dietary pattern were negatively associated with MRI parameters (cT1: beta: -0.052, p-value: 0.046, PDFF: beta: -0.448, p-value: 0.030, LIF: beta: -0.408, p-value: 0.025). Our findings indicate several associations between MRI parameters and dietary patterns in NAFLD patients, highlighting the importance of diet in NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Diabetes Mellitus, Type 2/complications , Fibrosis , Humans , Inflammation/complications , Liver/pathology , Magnetic Resonance Imaging/methods , Non-alcoholic Fatty Liver Disease/epidemiology
7.
Front Biosci (Landmark Ed) ; 27(1): 27, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35090332

ABSTRACT

BACKGROUND AND OBJECTIVES: Vascular Endothelial Growth Factor (VEGF) is an essential regulator of vascular biology. In addition to the well-established role in angiogenesis, circulating VEGF levels were found elevated in severely anemic patients, pointing out that anemia might affect the progression of angiogenesis in malignant and benign diseases through the alteration of VEGF levels. Ten single nucleotide polymorphisms (SNPs) in VEGFA and other loci were shown to explain more than 50% of its circulating levels. This study investigated the association of those ten VEGF-related SNPs with serum iron levels in a general Lebanese population free of chronic diseases (N = 460). RESULT: We found that the rs10738760 and the body mass index (BMI) were associated with decreased Iron levels (p = 0.002, and p < 0.001, respectively). When taken together, both variables, rs10738760 and BMI, interacted to reduce iron levels (p < 0.001). According to obesity status, the stratification revealed that the effect of rs10738760 was more pronounced in obese than non-obese individuals (p = 0.025). Conclusion: The intergenic SNP rs10738760 is associated with circulating iron levels, and this association depends on BMI status. Although of interest, these results need replication in larger populations from different ancestries.


Subject(s)
Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics , Body Mass Index , Genotype , Humans , Iron , Vascular Endothelial Growth Factors
9.
Aging (Albany NY) ; 13(20): 23517-23526, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34661551

ABSTRACT

Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations between VEGF-A and TL. TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL parameters were investigated. We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio (P=0.001143, ß=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is involved in haematopoiesis and the identified association with increased telomere attrition could be due to increased haematopoiesis. No significant epistatic interaction was identified, and no association was found between levels of VEGF-A and any of assessed phenotypes. We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play an important role in personalized medicine of chronic diseases and identification of molecular links between them can promote the understanding of their complex implications.


Subject(s)
Telomere Shortening/genetics , Telomere/genetics , Vascular Endothelial Growth Factor A/genetics , Hematopoiesis/genetics , Humans , Polymorphism, Single Nucleotide/genetics
10.
BMC Med Genomics ; 14(1): 233, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556110

ABSTRACT

BACKGROUND AND AIMS: Central obesity is a condition that poses a significant risk to global health and requires the employment of novel scientific methods for exploration. The objective of this study is to use DNA methylation analysis to detect DNA methylation loci linked to obesity phenotypes, i.e. waist circumference and waist-to-hip ratio adjusted for BMI. METHODS AND RESULTS: Two-hundred and ten healthy European participants from the STANISLAS Family Study (SFS), comprising 73 nuclear families, were comprehensively assessed for methylation status using Illumina Infinium HumanMethylation450 BeadChip. An epigenome-wide association study was performed, which identified a CpG site cg16170243 located on chromosome 18q21.2 significantly associated with waist circumference, after adjusting for BMI (ß = 2.32, SE = 0.41, Padj = 0.048). Cg16170243 corresponds to a 50 bp-length human methylation oligoprobe located within the AC090241.2 gene that overlaps ST8SIA5 gene. No significant association was observed with waist-to-hip ratio adjusted for BMI (Padj > 0.05). CONCLUSIONS: A novel association between DNA methylation and WC was identified, which is demonstrating that epigenetic mechanisms may have a significant impact on waist circumference ratio in healthy individuals. Further studies are warranted to address the causal effects of this association.


Subject(s)
Epigenome
11.
Front Immunol ; 12: 683028, 2021.
Article in English | MEDLINE | ID: mdl-34025683

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with no therapeutic consensus. Oxidation and inflammation are hallmarks in the progression of this complex disease, which also involves interactions between the genetic background and the environment. Mastiha is a natural nutritional supplement known to possess antioxidant and anti-inflammatory properties. This study investigated how a 6-month Mastiha supplementation (2.1 g/day) could impact the antioxidant and inflammatory status of patients with NAFLD, and whether genetic variants significantly mediate these effects. We recruited 98 patients with obesity (BMI ≥ 30 kg/m2) and NAFLD and randomly allocated them to either the Mastiha or the placebo group for 6 months. The anti-oxidative and inflammatory status was assessed at baseline and post-treatment. Genome-wide genetic data was also obtained from all participants, to investigate gene-by-Mastiha interactions. NAFLD patients with severe obesity (BMI > 35kg/m2) taking the Mastiha had significantly higher total antioxidant status (TAS) compared to the corresponding placebo group (P value=0.008). We did not observe any other significant change in the investigated biomarkers as a result of Mastiha supplementation alone. We identified several novel gene-by-Mastiha interaction associations with levels of cytokines and antioxidant biomarkers. Some of the identified genetic loci are implicated in the pathological pathways of NAFLD, including the lanosterol synthase gene (LSS) associated with glutathione peroxidase activity (Gpx) levels, the mitochondrial pyruvate carrier-1 gene (MPC1) and the sphingolipid transporter-1 gene (SPNS1) associated with hemoglobin levels, the transforming growth factor-beta-induced gene (TGFBI) and the micro-RNA 129-1 (MIR129-1) associated with IL-6 and the granzyme B gene (GZMB) associated with IL-10 levels. Within the MAST4HEALTH randomized clinical trial (NCT03135873, www.clinicaltrials.gov) Mastiha supplementation improved the TAS levels among NAFLD patients with severe obesity. We identified several novel genome-wide significant nutrigenetic interactions, influencing the antioxidant and inflammatory status in NAFLD. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03135873.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Dietary Supplements , Mastic Resin/chemistry , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Nutrigenomics , Adult , Aged , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Biomarkers , Disease Management , Disease Susceptibility , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/etiology , Nutrigenomics/methods , Oxidative Stress/drug effects , Young Adult
12.
Mol Nutr Food Res ; 65(10): e2001178, 2021 05.
Article in English | MEDLINE | ID: mdl-33629536

ABSTRACT

SCOPE: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with poor therapeutic strategies. Mastiha possesses antioxidant/anti-inflammatory and lipid-lowering properties. The authors investigate the effectiveness of Mastiha as a nonpharmacological intervention in NAFLD. METHODS AND RESULTS: Ninety-eight patients with NAFLD in three countries (Greece, Italy, Serbia) are randomly allocated to either Mastiha or Placebo for 6 months, as part of a multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The authors assess NAFLD severity via magnetic resonance imaging (MRI) scanning and LiverMultiScan technique and evaluate the effectiveness of Mastiha through medical, anthropometric, biochemical, metabolomic, and microbiota assessment. Mastiha is not superior to Placebo on changes in iron-corrected T1 (cT1) and Liver Inflammation Fibrosis score (LIF) in entire patient population; however, after BMI stratification (BMI ≤ 35 kg m-2 and BMI > 35 kg m-2 ), severely obese patients show an improvement in cT1 and LIF in Mastiha versus Placebo. Mastiha increases dissimilarity of gut microbiota, as shown by the Bray-Curtis index, downregulates Flavonifractor, a known inflammatory taxon and decreases Lysophosphatidylcholines-(LysoPC) 18:1, Lysophosphatidylethanolamines-(LysoPE) 18:1, and cholic acid compared to Placebo. CONCLUSION: Mastiha supplementation improves microbiota dysbiosis and lipid metabolite levels in patients with NAFLD, although it reduces parameters of liver inflammation/fibrosis only in severely obese patients.


Subject(s)
Mastic Resin/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Aged , Body Mass Index , Dietary Supplements , Double-Blind Method , Dysbiosis/drug therapy , Female , Gastrointestinal Microbiome/drug effects , Greece , Humans , Italy , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/complications , Placebos , Serbia
13.
Cells ; 9(6)2020 05 31.
Article in English | MEDLINE | ID: mdl-32486379

ABSTRACT

Short leukocyte telomere length (LTL) is associated with atherosclerotic cardiovascular disease (ASCVD). Mendelian randomisation studies, using single nucleotide polymorphisms (SNPs) associated with short LTL, infer a causal role of LTL in ASCVD. Recent results, using the blood-and-muscle model, indicate that higher early life LTL attrition, as estimated by the ratio between LTL and skeletal muscle telomere length (MTL), rather than short LTL at conception, as estimated by MTL, should be responsible of the ASCVD-LTL connection. We combined LTL and MTL measurements and SNPs profiling in 402 individuals to determine if 15 SNPs classically described as associated with short LTL at adult age were rather responsible for higher LTL attrition during early life than for shorter LTL at birth. Two of these SNPs (rs12696304 and rs10936599) were associated with LTL in our cohort (p = 0.027 and p = 0.025, respectively). These SNPs, both located on the TERC gene, were associated with the LTL/MTL ratio (p = 0.007 and p = 0.037, respectively), but not with MTL (p = 0.78 and p = 0.32 respectively). These results suggest that SNPs located on genes coding for telomere maintenance proteins may contribute to a higher LTL attrition during the highly replicative first years of life and have an impact later on the development of ASCVD.


Subject(s)
Genetic Variation , Leukocytes/metabolism , Muscles/metabolism , RNA/genetics , Telomerase/genetics , Telomere Shortening/genetics , Telomere/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Telomere Homeostasis , Young Adult
14.
Clin Epigenetics ; 12(1): 79, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503626

ABSTRACT

INTRODUCTION: Vascular endothelial growth factor A (VEGF-A) is a chemokine that induces proliferation and migration of vascular endothelial cells and is essential for both physiological and pathological angiogenesis. It is known for its high heritability (> 60%) and involvement in most common morbidities, which makes it a potentially interesting biomarker. Large GWAS studies have already assessed polymorphisms related to VEGF-A. However, no previous research has provided epigenome-wide insight in regulation of VEGF-A. METHODS: VEGF-A concentrations of healthy participants from the STANISLAS Family Study (n = 201) were comprehensively assessed for association with DNA methylation. Genome-wide DNA methylation profiles were determined in whole blood DNA using the 450K Infinium BeadChip Array (Illumina). VEGF-A concentration in PBMC extracts was detected using a high-sensitivity multiplex Cytokine Array (Randox Laboratories, UK). RESULTS: Epigenome-wide association analysis identified 41 methylation sites significantly associated with VEGF-A concentrations derived from PBMC extracts. Twenty CpG sites within 13 chromosomes reached Holm-Bonferroni significance. Significant values ranged from P = 1.08 × 10-7 to P = 5.64 × 10-15. CONCLUSION: This study exposed twenty significant CpG sites linking DNA methylation to VEGF-A concentration. Methylation detected in promoter regions, such as TPX2 and HAS-1, could explain previously reported associations with the VEGFA gene. Methylation may also help in the understanding of the regulatory mechanisms of other genes located in the vicinity of detected CpG sites.


Subject(s)
DNA Methylation/genetics , Epigenomics/methods , Leukocytes, Mononuclear/metabolism , Vascular Endothelial Growth Factor A/genetics , Adolescent , Adult , Cell Cycle Proteins/metabolism , CpG Islands/genetics , Female , Genome-Wide Association Study/methods , Healthy Volunteers/statistics & numerical data , High-Throughput Nucleotide Sequencing/methods , Humans , Hyaluronan Synthases/metabolism , Male , Microtubule-Associated Proteins/metabolism , Neovascularization, Pathologic/metabolism , Polymorphism, Genetic/genetics , Young Adult
15.
Clin Chim Acta ; 509: 172-176, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32544432

ABSTRACT

RATIONALE: Since identifying gender-specific genetic associations may have a significant impact on public health, we studied the interaction between rs2569190 in CD14 (cluster of differentiation 14) and gender in relation to the lipid traits in two independent populations. METHODS: We first tested the interaction in a discovery population (SFS, n = 956), then replicated it in an independent population (LGP, n = 460), followed by a meta-analysis (n = 1,416). Finally, stratification according to gender was conducted to test the association between rs2569190 and lipid traits. Binary multiple logistic regression models were used while correcting for many confounders. Power calculations were also performed. RESULTS: An interaction between rs2569190 and gender, which increased the risk of total cholesterol levels in SFS, was found (OR = 2.151 and P = 0.05). This interaction was further replicated in the LGP (OR = 1.353 and P < 0.001), and the meta-analysis showed an overall significant interaction (OR = 1.436 and Pmeta = 0.02). Similarly, the meta-analysis showed an overall significant positive effect (OR = 1.204 and Pmeta = 0.004) for low-density lipoprotein cholesterol levels. Overall, 1,416 patients were evaluated, and the statistical heterogeneity was low, with I2 estimates ranging between 0% and 22.2%. In contrast, rs2569190 in CD14 did not show any significant interaction with gender influencing high-density lipoprotein levels and triglycerides levels in both populations. CONCLUSION: An interaction between rs2569190 in CD14 and gender increased the risk of hypercholesterolemia in two independent populations with a gender-specific effect in males.


Subject(s)
Hypercholesterolemia , Female , Humans , Hypercholesterolemia/genetics , Lipopolysaccharide Receptors/genetics , Logistic Models , Male , Phenotype , Polymorphism, Single Nucleotide
16.
Clin Chem Lab Med ; 58(11): 1819-1827, 2020 10 25.
Article in English | MEDLINE | ID: mdl-32238601

ABSTRACT

Background Growing evidence reports an association between inflammatory markers, obesity and blood pressure (BP). Specifically, the intergenic single nucleotide polymorphism (SNP) rs7556897T > C (MAF = 0.34) located between SLC19A3 and the CCL20 was shown to be associated with chronic inflammatory diseases. In addition, CCL20 expression was found increased in pancreatic islets of obese rodents and human pancreatic ß cells under the influence of inflammation. In this study, we hypothesized that SNP rs7556897 could affect BP levels, thus providing a link between inflammation, BP and obesity. Methods BP was measured under supine position with a manual sphygmomanometer; values reported were the means of three readings. We analyzed rs7556897 in 577 normal weight and 689 obese French children. Using real-time polymerase chain reaction (PCR), we quantified CCL20 and SLC19A3 expression in adipose tissue and peripheral blood mononuclear cells (PBMCs) of normal weight and overweight children. Results The rs7556897C allele was negatively associated with diastolic BP in normal weight children (ß = -0.012 ± 0.004, p = 0.006) but positively associated in obese children (ß = 2.178 ± 0.71, p = 0.002). A significant interaction between rs7556897T > C and the obesity status (obese or normal weight) was detected (ß = 3.49, p = 9.79 × 10-5) for BP in a combined population analysis. CCL20 mRNA was only expressed in the adipose tissue of overweight children, and its expression levels were 10.7× higher in PBMCs of overweight children than normal weight children. Finally, CCL20 mRNA levels were positively associated with rs7556897T > C in PBMCs of 58 normal weight children (ß = 0.43, p = 0.002). SLC19A3 was not expressed in PBMCs, and in adipose tissue, it showed same levels of expression in normal weight and overweight children. The gene expression results may highlight a specific involvement of CCL20 via communicating obesity/inflammation pathways that regulate BP. Conclusions Childhood obesity reverses the effect of rs7556897T > C on diastolic BP, possibly via the modulation of CCL20 expression levels.


Subject(s)
Blood Pressure/genetics , Chemokine CCL20/genetics , Membrane Transport Proteins/genetics , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Chemokine CCL20/metabolism , Child , DNA, Intergenic , Female , France , Gene Expression , Humans , Leukocytes, Mononuclear/metabolism , Male , Polymorphism, Single Nucleotide , White People
17.
Front Genet ; 11: 569175, 2020.
Article in English | MEDLINE | ID: mdl-33424917

ABSTRACT

The first evidence of individual targeting medicine appeared in ancient times thousands of years ago. Various therapeutic approaches have been established since then. However, even nowadays, conventional therapies do not take into consideration individuals' idiosyncrasy and genetic make-up, failing thus to be effective in some cases. Over time, the necessity of a more precise and effective treatment resulted in the development of a scientific field currently known as "personalized medicine." The numerous technological breakthroughs in this field have acknowledged personalized medicine as the next generation of diagnosis and treatment. Although personalized medicine has attracted a lot of attention the last years, there are still several obstacles hindering its application in clinical practice. These limitations have come to light recently, due to the COVID-19 pandemic. This review describes the "journey" of personalized medicine over time, emphasizing on important milestones achieved through time. Starting from the treatment of malaria, as a first more personalized therapeutic approach, it highlights the need of new diagnostic tools and therapeutic regimens based on individuals' genetic background. Furthermore, it aims at raising global awareness regarding the current limitations and the necessity of a personalized strategy to overpass healthcare problems and hence, the current crisis.

18.
Clin Chem Lab Med ; 58(2): 162-177, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31465289

ABSTRACT

Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.


Subject(s)
Telomere Shortening , Telomere/physiology , Biomarkers/metabolism , Child , Genetic Variation , Humans , Infant, Newborn , Neoplasms/genetics , Neoplasms/pathology , Risk Factors , Stress, Psychological
20.
PLoS One ; 14(8): e0220902, 2019.
Article in English | MEDLINE | ID: mdl-31419243

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) is a signal protein, implicated in various physiological and pathophysiological processes together with other common inflammatory biomarkers. However, their associations have not yet been fully elucidated. In the present study, we investigated associations between VEGF and four specific VEGF mRNA isoforms with levels of 11 inflammation molecules, derived from peripheral blood mononuclear cells (PBMCs) extracts. METHODS: Healthy participants from the STANISLAS Family Study (n = 285) were included. Levels of VEGF (four mRNA isoforms and protein levels) and inflammatory molecules (IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, INF-γ, TNF-α, MCP-1, EGF) were measured in PBMCs extracts. Multiple regression analyses were performed, adjusted for age and gender. RESULTS: The analyses revealed significant associations between VEGF protein levels and levels of IL-4 (ß = 0.028, P = 0.013), MCP-1 (ß = 0.015, P<0.0001) and EGF (ß = 0.017, P<0.0001). Furthermore, mRNA isoform VEGF165 was associated with MCP-1 and IL-1α (P = 0.002 and P = 0.008, respectively); and mRNA isoform VEGF189 was associated with IL-4 and IL-6 (P = 0.019 and P = 0.034, respectively). CONCLUSIONS: To our knowledge, the present study represents the first investigation that successfully demonstrates links between VEGF protein levels and inflammatory molecules levels derived from PBMCs extracts and identifies associations between specific VEGF mRNA isoforms and inflammatory molecules. IMPACT: These findings provide novel insights that may assist in the development of new tissue and mRNA isoform specific measurements of VEGF levels, which may positively contribute to predicting the risk of common complex diseases and response of currently used anti-VEGF agents, and developing of novel targeted therapies for VEGF-related pathophysiology.


Subject(s)
Inflammation/immunology , Leukocytes, Mononuclear/immunology , Vascular Endothelial Growth Factor A/immunology , Adult , Cells, Cultured , Chemokine CCL2/analysis , Chemokine CCL2/immunology , Female , Humans , Inflammation/genetics , Interleukins/analysis , Interleukins/immunology , Leukocytes, Mononuclear/chemistry , Male , Middle Aged , RNA, Messenger/analysis , RNA, Messenger/genetics , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/immunology , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...