Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786628

ABSTRACT

The in vitro evaluation of 3D scaffolds for bone tissue engineering in mono-cultures is a common practice; however, it does not represent the native complex nature of bone tissue. Co-cultures of osteoblasts and osteoclasts, without the addition of stimulating agents for monitoring cellular cross-talk, remains a challenge. In this study, a growth factor-free co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human peripheral blood mononuclear cells (hPBMCs) has been established and used for the evaluation of 3D-printed scaffolds for bone tissue engineering. The scaffolds were produced from PLLA/PCL/PHBV polymeric blends, with two composite materials produced through the addition of 2.5% w/v nanohydroxyapatite (nHA) or strontium-substituted nanohydroxyapatite (Sr-nHA). Cell morphology data showed that hPBMCs remained undifferentiated in co-culture, while no obvious differences were observed in the mono- and co-cultures of hBM-MSCs. A significantly increased alkaline phosphatase (ALP) activity and osteogenic gene expression was observed in co-culture on Sr-nHA-containing scaffolds. Tartrate-resistant acid phosphatase (TRAP) activity and osteoclastogenic gene expression displayed significantly suppressed levels in co-culture on Sr-nHA-containing scaffolds. Interestingly, mono-cultures of hPBMCs on Sr-nHA-containing scaffolds indicated a delay in osteoclasts formation, as evidenced from TRAP activity and gene expression, demonstrating that strontium acts as an osteoclastogenesis inhibitor. This co-culture study presents an effective 3D model to evaluate the regenerative capacity of scaffolds for bone tissue engineering, thus minimizing time-consuming and costly in vivo experiments.

2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35359, 2024 01.
Article in English | MEDLINE | ID: mdl-38247244

ABSTRACT

Vertebral compression fractures are one of the most severe clinical consequences of osteoporosis and the most common fragility fracture afflicting 570 and 1070 out of 100,000 men and women worldwide, respectively. Vertebroplasty (VP), a minimally invasive surgical procedure that involves the percutaneous injection of bone cement, is one of the most efficacious methods to stabilise osteoporotic vertebral compression fractures. However, postoperative fracture has been observed in up to 30% of patients following VP. Therefore, this study aims to investigate the effect of different injectable bone cement formulations on the stress distribution within the vertebrae and intervertebral discs due to VP and consequently recommend the optimal cement formulation. To achieve this, a 3D finite element (FE) model of the T11-L1 vertebral body was developed from computed tomography scan data of the spine. Osteoporotic bone was modeled by reducing the Young's modulus by 20% in the cortical bone and 74% in cancellous bone. The FE model was subjected to different physiological movements, such as extension, flexion, bending, and compression. The osteoporotic model caused a reduction in the average von Mises stress compared with the normal model in the T12 cancellous bone and an increment in the average von Mises stress value at the T12 cortical bone. The effects of VP using different formulations of a novel injectable bone cement were modeled by replacing a region of T12 cancellous bone with the materials. Due to the injection of the bone cement at the T12 vertebra, the average von Mises stresses on cancellous bone increased and slightly decreased on the cortical bone under all loading conditions. The novel class of bone cements investigated herein demonstrated an effective restoration of stress distribution to physiological levels within treated vertebrae, which could offer a potential superior alternative for VP surgery as their anti-osteoclastogenic properties could further enhance the appeal of their fracture treatment and may contribute to improved patient recovery and long-term well-being.


Subject(s)
Fractures, Compression , Spinal Fractures , Vertebroplasty , Male , Humans , Female , Bone Cements/pharmacology , Finite Element Analysis , Fractures, Compression/surgery , Vertebral Body , Spinal Fractures/surgery
3.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37368310

ABSTRACT

Nanohydroxyapatite (nanoHA) is the major mineral component of bone. It is highly biocompatible, osteoconductive, and forms strong bonds with native bone, making it an excellent material for bone regeneration. However, enhanced mechanical properties and biological activity for nanoHA can be achieved through enrichment with strontium ions. Here, nanoHA and nanoHA with a substitution degree of 50 and 100% of calcium with strontium ions (Sr-nanoHA_50 and Sr-nanoHA_100, respectively) were produced via wet chemical precipitation using calcium, strontium, and phosphorous salts as starting materials. The materials were evaluated for their cytotoxicity and osteogenic potential in direct contact with MC3T3-E1 pre-osteoblastic cells. All three nanoHA-based materials were cytocompatible, featured needle-shaped nanocrystals, and had enhanced osteogenic activity in vitro. The Sr-nanoHA_100 indicated a significant increase in the alkaline phosphatase activity at day 14 compared to the control. All three compositions revealed significantly higher calcium and collagen production up to 21 days in culture compared to the control. Gene expression analysis exhibited, for all three nanoHA compositions, a significant upregulation of osteonectin and osteocalcin on day 14 and of osteopontin on day 7 compared to the control. The highest osteocalcin levels were found for both Sr-substituted compounds on day 14. These results demonstrate the great osteoinductive potential of the produced compounds, which can be exploited to treat bone disease.

4.
Bioengineering (Basel) ; 10(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37237602

ABSTRACT

The application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.%) polymeric blend scaffolds. The constructs were subjected every day to cyclic uniaxial compression for 40 min at a displacement of 400 µm, using three frequency values, 0.5, 1, and 1.5 Hz, for up to 21 days, and their osteogenic response was compared to that of static cultures. Finite element simulation was performed to validate the scaffold design and the loading direction, and to assure that cells inside the scaffolds would be subjected to significant levels of strain during stimulation. None of the applied loading conditions negatively affected the cell viability. The alkaline phosphatase activity data indicated significantly higher values at all dynamic conditions compared to the static ones at day 7, with the highest response being observed at 0.5 Hz. Collagen and calcium production were significantly increased compared to static controls. These results indicate that all of the examined frequencies substantially promoted the osteogenic capacity.

5.
J Appl Polym Sci ; 140(10): e53593, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37035465

ABSTRACT

Extrusion printing represents one of the leading additive manufacturing techniques for tissue engineering purposes due to the possibility of achieving accurate control of the final shape and porosity of the scaffold. Despite many polymeric materials having already been optimized for this application, the processing of biopolymer-based systems still presents several limitations mainly ascribed to their poor rheological properties. Moreover, the introduction of inorganic components into the biomaterial formulation may introduce further difficulties related to system homogeneity, finally compromising its extrudability. In this context, the present study aimed at developing a new multi-phase biomaterial ink able to mimic the native composition of bone extracellular matrix, combining type-I-collagen with nano-hydroxyapatite and mesoporous bioactive glass nanoparticles. Starting from a comprehensive rheological assessment, computational-fluid-dynamics-based models were exploited to describe the material flow regime and define the optimal printing process planning. During printing, a gelatin-based bath was exploited to support the deposition of the material, while the gelation of collagen and its further chemical crosslinking with genipin enabled the stabilization of the printed structure, characterized by high shape fidelity. The developed strategy enables the extrusion printing of complex multi-phase systems and the design of high-precision biomimetic scaffolds with great potential for bone tissue engineering.

6.
Biomater Adv ; 149: 213406, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054582

ABSTRACT

The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Core Binding Factor Alpha 1 Subunit/metabolism , Strontium/pharmacology , Cell Differentiation , Bone Regeneration
7.
Med Eng Phys ; 114: 103967, 2023 04.
Article in English | MEDLINE | ID: mdl-37030893

ABSTRACT

The occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process. This was achieved by developing a finite element (FE) model of the AMTD together with a fracture fixation assembly, and a femur with an implanted femoral stem. The response of both normal and osteoporotic bone was investigated by implementing their respective material properties in the model. Physiological loading simulating the peak load during standing, walking, and stair climbing was investigated. The results showed that the fixation assembly was the prime load bearing component for this configuration of devices. Within the fixation assembly, the bone screws were found to have the highest stresses in the fixation assembly for all the loading conditions. Whereas the stresses within the AMTD were significantly below the maximum yield strength of the device's polymeric blend material. Furthermore, this study also investigated the performance of different fixation assembly materials and found Ti-6Al-4V to be the optimal material choice from those included in this study.


Subject(s)
Femoral Fractures , Osteoporotic Fractures , Periprosthetic Fractures , Humans , Aged , Osteoporotic Fractures/surgery , Fracture Fixation, Internal , Femur/surgery , Femoral Fractures/surgery , Bone Screws , Bone Plates , Periprosthetic Fractures/surgery , Finite Element Analysis , Biomechanical Phenomena
8.
Polymers (Basel) ; 15(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36850334

ABSTRACT

Bone tissue engineering has emerged as a promising strategy to overcome the limitations of current treatments for bone-related disorders, but the trade-off between mechanical properties and bioactivity remains a concern for many polymeric materials. To address this need, novel polymeric blends of poly-L-lactic acid (PLLA), polycaprolactone (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have been explored. Blend filaments comprising PLLA/PCL/PHBV at a ratio of 90/5/5 wt% have been prepared using twin-screw extrusion. The PLLA/PCL/PHBV blends were enriched with nano-hydroxyapatite (nano-HA) and strontium-substituted nano-HA (Sr-nano-HA) to produce composite filaments. Three-dimensional scaffolds were printed by fused deposition modelling from PLLA/PCL/PHBV blend and composite filaments and evaluated mechanically and biologically for their capacity to support bone formation in vitro. The composite scaffolds had a mean porosity of 40%, mean pores of 800 µm, and an average compressive modulus of 32 MPa. Polymer blend and enriched scaffolds supported cell attachment and proliferation. The alkaline phosphatase activity and calcium production were significantly higher in composite scaffolds compared to the blends. These findings demonstrate that thermoplastic polyesters (PLLA and PCL) can be combined with polymers produced via a bacterial route (PHBV) to produce polymer blends with excellent biocompatibility, providing additional options for polymer blend optimization. The enrichment of the blend with nano-HA and Sr-nano-HA powders enhanced the osteogenic potential in vitro.

9.
Biomolecules ; 13(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36671479

ABSTRACT

Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.


Subject(s)
Bone Resorption , Fractures, Compression , Spinal Fractures , Humans , Fractures, Compression/drug therapy , Spinal Fractures/drug therapy , Calcium Sulfate , Bone Cements/pharmacology , Bone Cements/therapeutic use , Inducible T-Cell Co-Stimulator Protein
10.
Pharmaceutics ; 14(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36559130

ABSTRACT

Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed.

11.
Pharmaceutics ; 14(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145638

ABSTRACT

An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr2+ ions and an osteogenesis-enhancing molecule, N-Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% w/v polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3-5 min at 37 °C) and injectability in a wide range of temperatures (5-37 °C) through different needles (inner diameter in the range 0.4-1.6 mm). In addition, the MBG_Sr embedded into the hydrogel retained their full biocompatibility, and the released concentration of Sr2+ ions were effective in promoting the overexpression of pro-osteogenic genes from SAOS2 osteoblast-like cells. Finally, when incorporated into the hydrogel, the MBG_Sr loaded with NAC maintained their release properties, showing a sustained ion/drug co-delivery along 7 days, at variance with the MBG particles as such, showing a strong burst release in the first hours of soaking.

12.
Polymers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145925

ABSTRACT

The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D structures (scaffolds) that can support bone formation. Bone's extracellular matrix (ECM) is mainly composed of type I collagen, making this material highly desirable in bone tissue engineering applications, and its bioactivity can be improved by incorporating specific biomolecules. In this work, type I collagen membranes were produced by electrospinning showing a fibre diameter below 200 nm. An optimized one-step strategy allowed to simultaneously crosslink the electrospun membranes and bind ICOS-Fc, a biomolecule able to reversibly inhibit osteoclast activity. The post-treatment did not alter the ECM-like nanostructure of the meshes and the physicochemical properties of collagen. UV-Vis and TGA analyses confirmed both crosslinking and grafting of ICOS-Fc onto the collagen fibres. The preservation of the biological activity of grafted ICOS-Fc was evidenced by the ability to affect the migratory activity of ICOSL-positive cells. The combination of ICOS-Fc with electrospun collagen represents a promising strategy to design multifunctional devices able to boost bone regeneration in osteoporotic fractures.

13.
Biofactors ; 48(5): 1089-1110, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35661288

ABSTRACT

Bone homeostasis is the equilibrium between organic and inorganic components of the extracellular matrix (ECM) and cells. Alteration of this balance has consequences on bone mass and architecture, resulting in conditions such as osteoporosis (OP). Given ECM protein mutual regulation and their effects on bone structure and mineralization, further insight into their expression is crucial to understanding bone biology under normal and pathological conditions. This study focused on Type I Collagen, which is mainly responsible for structural properties and mineralization of bone, and selected proteins implicated in matrix composition, mineral deposition, and cell-matrix interaction such as Decorin, Osteocalcin, Osteopontin, Bone Sialoprotein 2, Osteonectin and Transforming Growth Factor beta. We developed a novel multidisciplinary approach in order to assess bone matrix in healthy and OP conditions more comprehensively by exploiting the Fourier Transform Infrared Imaging (FTIRI) technique combined with histomorphometry, Sirius Red staining, immunohistochemistry, and Western Blotting. This innovatory procedure allowed for the analysis of superimposed tissue sections and revealed that the alterations in OP bone tissue architecture were associated with warped Type I Collagen structure and deposition but not with changes in the total protein amount. The detected changes in the expression and/or cooperative or antagonist role of Decorin, Osteocalcin, Osteopontin, and Bone Sialoprotein-2 indicate the deep impact of these NCPs on collagen features of OP bone. Overall, our strategy may represent a starting point for designing targeted clinical strategies aimed at bone mass preservation and sustain the FTIRI translational capability as upcoming support for traditional diagnostic methods.


Subject(s)
Osteopontin , Osteoporosis , Collagen , Collagen Type I/genetics , Collagen Type I/metabolism , Decorin/metabolism , Femur Head/chemistry , Femur Head/metabolism , Femur Head/pathology , Fourier Analysis , Humans , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Osteocalcin/analysis , Osteocalcin/genetics , Osteocalcin/metabolism , Osteonectin , Osteopontin/genetics , Osteopontin/metabolism , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Transforming Growth Factor beta/metabolism
14.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268956

ABSTRACT

Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials' functionalization with Sr as an osteopromoting dopant in BTE.

15.
Polymers (Basel) ; 14(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35267680

ABSTRACT

In bone regenerative strategies, the controlled release of growth factors is one of the main aspects for successful tissue regeneration. Recent trends in the drug delivery field increased the interest in the development of biodegradable systems able to protect and transport active agents. In the present study, we designed degradable poly(lactic-co-glycolic)acid (PLGA) nanocarriers suitable for the release of Transforming Growth Factor-beta 1 (TGF-ß1), a key molecule in the management of bone cells behaviour. Spherical TGF-ß1-containing PLGA (PLGA_TGF-ß1) nanoparticles (ca.250 nm) exhibiting high encapsulation efficiency (ca.64%) were successfully synthesized. The TGF-ß1 nanocarriers were subsequently combined with type I collagen for the fabrication of nanostructured 3D printed scaffolds able to mimic the TGF-ß1 presence in the human bone extracellular matrix (ECM). The homogeneous hybrid formulation underwent a comprehensive rheological characterisation in view of 3D printing. The 3D printed collagen-based scaffolds (10 mm × 10 mm × 1 mm) successfully mimicked the TGF-ß1 presence in human bone ECM as assessed by immunohistochemical TGF-ß1 staining, covering ca.3.4% of the whole scaffold area. Moreover, the collagenous matrix was able to reduce the initial burst release observed in the first 24 h from about 38% for the PLGA_TGF-ß1 alone to 14.5%, proving that the nanocarriers incorporation into collagen allows achieving sustained release kinetics.

16.
Methods Protoc ; 5(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35076543

ABSTRACT

New biomaterials and scaffolds for bone tissue engineering (BTE) applications require to be tested in a bone microenvironment reliable model. On this assumption, the in vitro laboratory protocols with bone cells represent worthy experimental systems improving our knowledge about bone homeostasis, reducing the costs of experimentation. To this day, several models of the bone microenvironment are reported in the literature, but few delineate a protocol for testing new biomaterials using bone cells. Herein we propose a clear protocol to set up an indirect co-culture system of human-derived osteoblasts and osteoclast precursors, providing well-defined criteria such as the cell seeding density, cell:cell ratio, the culture medium, and the proofs of differentiation. The material to be tested may be easily introduced in the system and the cell response analyzed. The physical separation of osteoblasts and osteoclasts allows distinguishing the effects of the material onto the two cell types and to evaluate the correlation between material and cell behavior, cell morphology, and adhesion. The whole protocol requires about 4 to 6 weeks with an intermediate level of expertise. The system is an in vitro model of the bone remodeling system useful in testing innovative materials for bone regeneration, and potentially exploitable in different application fields. The use of human primary cells represents a close replica of the bone cell cooperation in vivo and may be employed as a feasible system to test materials and scaffolds for bone substitution and regeneration.

17.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055200

ABSTRACT

Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).

18.
Pharmaceutics ; 13(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834366

ABSTRACT

In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles.

19.
Materials (Basel) ; 14(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34772251

ABSTRACT

Bone-tissue regeneration is a growing field, where nanostructured-bioactive materials are designed to replicate the natural properties of the target tissue, and then are processed with technologies such as 3D printing, into constructs that mimic its natural architecture. Type I bovine collagen formulations, containing functional nanoparticles (enriched with therapeutic ions or biomolecules) or nanohydroxyapatite, are considered highly promising, and can be printed using support baths. These baths ensure an accurate deposition of the material, nonetheless their full removal post-printing can be difficult, in addition to undesired reactions with the crosslinking agents often used to improve the final structural integrity of the scaffolds. Such issues lead to partial collapse of the printed constructs and loss of geometrical definition. To overcome these limitations, this work presents a new alternative approach, which consists of adding a suitable concentration of crosslinking agent to the printing formulations to promote the in-situ crosslinking of the constructs prior to the removal of the support bath. To this aim, genipin, chosen as crosslinking agent, was added (0.1 wt.%) to collagen-based biomaterial inks (containing either 38 wt.% mesoporous bioactive glasses or 65 wt.% nanohydroxyapatite), to trigger the crosslinking of collagen and improve the stability of the 3D printed scaffolds in the post-processing step. Moreover, to support the material deposition, a 15 wt.% alginic acid solution was used as a bath, which proved to sustain the printed structures and was also easily removable, allowing for the stable processing of high-resolution geometries.

20.
Materials (Basel) ; 14(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442884

ABSTRACT

The use of biomaterials and scaffolds to boost bone regeneration is increasingly gaining interest as a complementary method to the standard surgical and pharmacological treatments in case of severe injuries and pathological conditions. In this frame, the selection of biomaterials and the accurate assessment of the manufacturing procedures are considered key factors in the design of constructs able to resemble the features of the native tissue and effectively induce specific cell responses. Accordingly, composite scaffolds based on type-I-collagen can mimic the composition of bone extracellular matrix (ECM), while electrospinning technologies can be exploited to produce nanofibrous matrices to resemble its architectural organization. However, the combination of collagen and electrospinning reported several complications due to the frequent denaturation of the protein and the variability of results according to collagen origin, concentration, and solvent. In this context, the strategies optimized in this study enabled the preparation of collagen-based electrospun scaffolds characterized by about 100 nm fibers, preserving the physico-chemical properties of the protein thanks to the use of an acetic acid-based solvent. Moreover, nanoparticles of mesoporous bioactive glasses were combined with the optimized collagen formulation, proving the successful design of composite scaffolds resembling the morphological features of bone ECM at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...