Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Med ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162940

ABSTRACT

PURPOSE: This study aimed to determine the accuracy of detecting ischemic core volume using computed tomography perfusion (CTP) in patients with suspected acute ischemic stroke compared to diffusion-weighted magnetic resonance imaging (DW-MRI) as the reference standard. METHODS: This retrospective monocentric study included patients who underwent CTP and DW-MRI for suspected acute ischemic stroke. The ischemic core size was measured at DW-MRI. The detectability threshold volume was defined as the lowest volume detected by each method. Clinical data on revascularization therapy, along with the clinical decision that influenced the choice, were collected. Volumes of the ischemic cores were compared using the Mann-Whitney U test. RESULTS: Of 83 patients who underwent CTP, 52 patients (median age 73 years, IQR 63-80, 36 men) also had DW-MRI and were included, with a total of 70 ischemic cores. Regarding ischemic cores, only 18/70 (26%) were detected by both CTP and DW-MRI, while 52/70 (74%) were detected only by DW-MRI. The median volume of the 52 ischemic cores undetected on CTP (0.6 mL, IQR 0.2-1.3 mL) was significantly lower (p < 0.001) than that of the 18 ischemic cores detected on CTP (14.2 mL, IQR 7.0-18.4 mL). The smallest ischemic core detected on CTP had a volume of 5.0 mL. Among the 20 patients with undetected ischemic core on CTP, only 10% (2/20) received thrombolysis treatment. CONCLUSIONS: CTP maps failed in detecting ischemic cores smaller than 5 mL. DW-MRI remains essential for suspected small ischemic brain lesions to guide a correct treatment decision-making.

2.
J Clin Med ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999539

ABSTRACT

In patients with total hip arthroplasty (THA) with recurrent pain, symptoms may be caused by several conditions involving not just the joint, but also the surrounding soft tissues including tendons, muscles, bursae, and peripheral nerves. US and US-guided interventional procedures are important tools in the diagnostic work-up of patients with painful THA given that it is possible to reach a prompt diagnosis both directly identifying the pathological changes of periprosthetic structures and indirectly evaluating the response and pain relief to local injection of anesthetics under US monitoring. Then, US guidance can be used for the aspiration of fluid from the joint or periarticular collections, or alternatively to follow the biopsy needle to collect samples for culture analysis in the suspicion of prosthetic joint infection. Furthermore, US-guided percutaneous interventions may be used to treat several conditions with well-established minimally invasive procedures that involve injections of corticosteroid, local anesthetics, and platelet-rich plasma or other autologous products. In this review, we will discuss the clinical and technical applications of US-guided percutaneous interventional procedures in painful THA that can be used in routine daily practice for diagnostic and therapeutic purposes.

3.
Front Neuroinform ; 18: 1415085, 2024.
Article in English | MEDLINE | ID: mdl-38933144

ABSTRACT

Background: Quantitative maps obtained with diffusion weighted (DW) imaging, such as fractional anisotropy (FA) -calculated by fitting the diffusion tensor (DT) model to the data,-are very useful to study neurological diseases. To fit this map accurately, acquisition times of the order of several minutes are needed because many noncollinear DW volumes must be acquired to reduce directional biases. Deep learning (DL) can be used to reduce acquisition times by reducing the number of DW volumes. We already developed a DL network named "one-minute FA," which uses 10 DW volumes to obtain FA maps, maintaining the same characteristics and clinical sensitivity of the FA maps calculated with the standard method using more volumes. Recent publications have indicated that it is possible to train DL networks and obtain FA maps even with 4 DW input volumes, far less than the minimum number of directions for the mathematical estimation of the DT. Methods: Here we investigated the impact of reducing the number of DW input volumes to 4 or 7, and evaluated the performance and clinical sensitivity of the corresponding DL networks trained to calculate FA, while comparing results also with those using our one-minute FA. Each network training was performed on the human connectome project open-access dataset that has a high resolution and many DW volumes, used to fit a ground truth FA. To evaluate the generalizability of each network, they were tested on two external clinical datasets, not seen during training, and acquired on different scanners with different protocols, as previously done. Results: Using 4 or 7 DW volumes, it was possible to train DL networks to obtain FA maps with the same range of values as ground truth - map, only when using HCP test data; pathological sensitivity was lost when tested using the external clinical datasets: indeed in both cases, no consistent differences were found between patient groups. On the contrary, our "one-minute FA" did not suffer from the same problem. Conclusion: When developing DL networks for reduced acquisition times, the ability to generalize and to generate quantitative biomarkers that provide clinical sensitivity must be addressed.

4.
Brain Commun ; 6(2): fcae043, 2024.
Article in English | MEDLINE | ID: mdl-38482373

ABSTRACT

The progression of PET-based Braak stages correlates with cognitive deterioration in aging and Alzheimer's disease. Here, we investigate the association between PET-based Braak stages and functional impairment and assess whether PET-based Braak staging predicts a longitudinal decline in the performance of activities of daily living. In this cohort study, we evaluated cognitively unimpaired individuals and individuals with mild cognitive impairment or Alzheimer's disease dementia. Participants underwent [18F]MK6240 tau-PET, were assigned a PET-based Braak stage at baseline and were followed for a mean (SD) of 1.97 (0.66) years. Functional performance was evaluated with the Functional Activities Questionnaire, Everyday Cognition and functional Clinical Dementia Rating sum of boxes. Multiple linear regressions assessed the association of PET-based Braak stages with baseline functionality and with the longitudinal rate of change in functional scores, adjusting for age, sex and amyloid-ß load. We employed voxel-based regression models to investigate the association between functionality and tau-PET signal and assessed the voxel overlap with Braak regions of interest. We included 291 individuals (181 cognitively unimpaired, 56 amyloid-ß+ mild cognitive impairment and 54 amyloid-ß+ Alzheimer's disease) aged 70.60 (7.48) years. At baseline, PET-based Braak stages III-IV (ß = 0.43, P = 0.03) and V-VI (ß = 1.20, P < 0.0001) showed associations with poorer Functional Activities Questionnaire scores. Similarly, stages III-IV (ß = 0.43, P = 0.02) and V-VI (ß = 1.15, P < 0.0001) were associated with worse Everyday Cognition scores. Only stages V-VI were associated with higher functional Clinical Dementia Rating sum of boxes (ß = 1.17, P < 0.0001) scores. Increased tau-PET signals in all Braak regions of interest were linked to worse performance in all tools. The voxelwise analysis showed widespread cortical associations between functional impairment and tau-PET and high voxel overlap with Braak regions of interest. Baseline PET-based Braak stages V-VI predicted significant longitudinal functional decline as assessed by the Functional Activities Questionnaire (ß = 1.69, P < 0.0001), the Everyday Cognition (ß = 1.05, P = 0.001) and the functional Clinical Dementia Rating sum of boxes (ß = 1.29, P < 0.0001). Our results suggest that functional impairment increases with the severity of tau accumulation. These findings also indicate that PET-based Braak staging is a good predictor of functional impairment in the Alzheimer's disease continuum. Finally, our study provides evidence for the clinical significance of the PET-based Braak staging framework.

5.
Tomography ; 10(3): 415-427, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535774

ABSTRACT

Computed tomography (CT) arthrography is a quickly available imaging modality to investigate elbow disorders. Its excellent spatial resolution enables the detection of subtle pathologic changes of intra-articular structures, which makes this technique extremely valuable in a joint with very tiny chondral layers and complex anatomy of articular capsule and ligaments. Radiation exposure has been widely decreased with the novel CT scanners, thereby increasing the indications of this examination. The main applications of CT arthrography of the elbow are the evaluation of capsule, ligaments, and osteochondral lesions in both the settings of acute trauma, degenerative changes, and chronic injury due to repeated microtrauma and overuse. In this review, we discuss the normal anatomic findings, technical tips for injection and image acquisition, and pathologic findings that can be encountered in CT arthrography of the elbow, shedding light on its role in the diagnosis and management of different orthopedic conditions. We aspire to offer a roadmap for the integration of elbow CT arthrography into routine clinical practice, fostering improved patient outcomes and a deeper understanding of elbow pathologies.


Subject(s)
Arthrography , Elbow , Humans , Tomography, X-Ray Computed , Tomography Scanners, X-Ray Computed , Radiologists
6.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185677

ABSTRACT

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloidogenic Proteins , Immunoassay , Mass Spectrometry , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL