Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38566310

ABSTRACT

RNA modifications, including N-7-methylguanosine (m7G), are pivotal in governing RNA stability and gene expression regulation. The accurate detection of internal m7G modifications is of paramount significance, given recent associations between altered m7G deposition and elevated expression of the methyltransferase METTL1 in various human cancers. The development of robust m7G detection techniques has posed a significant challenge in the field of epitranscriptomics. In this study, we introduce two methodologies for the global and accurate identification of m7G modifications in human RNA. We introduce borohydride reduction sequencing (Bo-Seq), which provides base resolution mapping of m7G modifications. Bo-Seq achieves exceptional performance through the optimization of RNA depurination and scission, involving the strategic use of high concentrations of NaBH4, neutral pH and the addition of 7-methylguanosine monophosphate (m7GMP) during the reducing reaction. Notably, compared to NaBH4-based methods, Bo-Seq enhances the m7G detection performance, and simplifies the detection process, eliminating the necessity for intricate chemical steps and reducing the protocol duration. In addition, we present an antibody-based approach, which enables the assessment of m7G relative levels across RNA molecules and biological samples, however it should be used with caution due to limitations associated with variations in antibody quality between batches. In summary, our novel approaches address the pressing need for reliable and accessible methods to detect RNA m7G methylation in human cells. These advancements hold the potential to catalyse future investigations in the critical field of epitranscriptomics, shedding light on the complex regulatory roles of m7G in gene expression and its implications in cancer biology.


Subject(s)
Guanosine/analogs & derivatives , Nucleotides , RNA , Humans , RNA/chemistry , Nucleotides/metabolism , Methylation , Methyltransferases/genetics , RNA Processing, Post-Transcriptional
2.
Elife ; 112022 12 22.
Article in English | MEDLINE | ID: mdl-36546462

ABSTRACT

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Paraspeckles , Trans-Activators/metabolism , Polyribosomes/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Protein Biosynthesis
3.
Nat Commun ; 12(1): 6153, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686656

ABSTRACT

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Subject(s)
DEAD-box RNA Helicases/metabolism , Molecular Chaperones/metabolism , RNA, Small Nucleolar/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Base Pairing , DEAD-box RNA Helicases/genetics , Molecular Chaperones/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Organelle Biogenesis , RNA Folding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , Ribosome Subunits, Large, Eukaryotic/chemistry , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
4.
Genes Dev ; 33(13-14): 741-746, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31171702

ABSTRACT

Site-specific 2'-O-ribose methylation of mammalian rRNAs and RNA polymerase II-synthesized spliceosomal small nuclear RNAs (snRNAs) is mediated by small nucleolar and small Cajal body (CB)-specific box C/D ribonucleoprotein particles (RNPs) in the nucleolus and the nucleoplasmic CBs, respectively. Here, we demonstrate that 2'-O-methylation of the C34 wobble cytidine of human elongator tRNAMet(CAT) is achieved by collaboration of a nucleolar and a CB-specific box C/D RNP carrying the SNORD97 and SCARNA97 box C/D 2'-O-methylation guide RNAs. Methylation of C34 prevents site-specific cleavage of tRNAMet(CAT) by the stress-induced endoribonuclease angiogenin, implicating box C/D guide RNPs in controlling stress-responsive production of putative regulatory tRNA fragments.


Subject(s)
Cell Nucleolus/metabolism , Coiled Bodies/metabolism , Cytidine/metabolism , RNA, Transfer/metabolism , Ribonucleoproteins/metabolism , Cell Line , Gene Expression Regulation , HeLa Cells , Humans , Methylation , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA, Transfer/genetics , Ribonuclease, Pancreatic/metabolism , Ribonucleoproteins/genetics , Stress, Physiological
5.
EMBO J ; 36(7): 934-948, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28254838

ABSTRACT

The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.


Subject(s)
Gene Expression Regulation , RNA, Small Nuclear/biosynthesis , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , Chromatin Immunoprecipitation , HeLa Cells , Humans , RNA Polymerase II/metabolism
6.
Nat Struct Mol Biol ; 17(9): 1043-50, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20694008

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) catalyze hyperediting of long double-stranded RNAs (dsRNAs), whereby up to 50% of adenosines are converted to inosine (I). Although hyperedited dsRNAs (IU-dsRNAs) have been implicated in various cellular functions, we now provide evidence for another role. We show that IU-dsRNA suppresses the induction of interferon-stimulated genes (ISGs) and apoptosis by poly(IC). Moreover, we show that IU-dsRNA inhibits the activation of interferon regulatory factor 3 (IRF3), which is essential for the induction of ISGs and apoptosis. Finally, we speculate that the inhibition of IRF3 results from specific binding of IU-dsRNA to MDA-5 or RIG-I, both of which are cytosolic sensors for poly(IC). Although our data are consistent with a previous study in which ADAR1 deletion resulted in increased expression of ISGs and apoptosis, we show that IU-dsRNA per se suppresses ISGs and apoptosis. We therefore propose that any IU-dsRNA generated by ADAR1 can inhibit both pathways.


Subject(s)
Apoptosis , Base Pairing , Interferons/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferons/immunology , Poly I-C/immunology , Protein Binding
7.
J Cell Sci ; 123(Pt 1): 70-83, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20016068

ABSTRACT

The imprinted Snurf-Snrpn domain, also referred to as the Prader-Willi syndrome region, contains two approximately 100-200 kb arrays of repeated small nucleolar (sno)RNAs processed from introns of long, paternally expressed non-protein-coding RNAs whose biogenesis and functions are poorly understood. We provide evidence that C/D snoRNAs do not derive from a single transcript as previously envisaged, but rather from (at least) two independent transcription units. We show that spliced snoRNA host-gene transcripts accumulate near their transcription sites as structurally constrained RNA species that are prevented from diffusing, as well as multiple stable nucleoplasmic RNA foci dispersed in the entire nucleus but not in the nucleolus. Chromatin structure at these repeated arrays displays an outstanding parent-of-origin-specific higher-order organization: the transcriptionally active allele is revealed as extended DNA FISH signals whereas the genetically identical, silent allele is visualized as singlet DNA FISH signals. A similar allele-specific chromatin organization is documented for snoRNA gene arrays at the imprinted Dlk1-Dio3 domain. Our findings have repercussions for understanding the spatial organization of gene expression and the intra-nuclear fate of non-coding RNAs in the context of nuclear architecture.


Subject(s)
Neurons/metabolism , Nuclear Proteins/genetics , RNA, Nuclear/genetics , RNA, Untranslated/genetics , Spermatids/metabolism , Animals , Cells, Cultured , Chromatin Assembly and Disassembly , Genomic Imprinting , Hippocampus/pathology , Humans , Hypothalamus/pathology , In Situ Hybridization, Fluorescence , Male , Mice , Neurons/pathology , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/metabolism , Prader-Willi Syndrome/pathology , RNA, Messenger, Stored/biosynthesis , RNA, Messenger, Stored/genetics , Rats , Rats, Sprague-Dawley , Spermatids/pathology , Testis/pathology , Transcriptional Activation
9.
J Cell Biol ; 169(5): 745-53, 2005 Jun 06.
Article in English | MEDLINE | ID: mdl-15939761

ABSTRACT

Posttranscriptional, site-specific adenosine to inosine (A-to-I) base conversions, designated as RNA editing, play significant roles in generating diversity of gene expression. However, little is known about how and in which cellular compartments RNA editing is controlled. Interestingly, the two enzymes that catalyze RNA editing, adenosine deaminases that act on RNA (ADAR) 1 and 2, have recently been demonstrated to dynamically associate with the nucleolus. Moreover, we have identified a brain-specific small RNA, termed MBII-52, which was predicted to function as a nucleolar C/D RNA, thereby targeting an A-to-I editing site (C-site) within the 5-HT2C serotonin receptor pre-mRNA for 2'-O-methylation. Through the subcellular targeting of minigenes that contain natural editing sites, we show that ADAR2- but not ADAR1-mediated RNA editing occurs in the nucleolus. We also demonstrate that MBII-52 forms a bona fide small nucleolar ribonucleoprotein particle that specifically decreases the efficiency of RNA editing by ADAR2 at the targeted C-site. Our data are consistent with a model in which C/D small nucleolar RNA might play a role in the regulation of RNA editing.


Subject(s)
Adenosine Deaminase/metabolism , Cell Nucleolus/metabolism , RNA Editing/genetics , RNA Precursors/metabolism , RNA, Small Nucleolar/metabolism , Adenosine Deaminase/genetics , Animals , Cell Compartmentation/genetics , Cell Nucleolus/genetics , Mice , NIH 3T3 Cells , RNA Precursors/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Small Nucleolar/genetics , RNA-Binding Proteins , Rats , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Ribonucleoproteins, Small Nucleolar/metabolism
10.
Nucleic Acids Res ; 31(22): 6543-51, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14602913

ABSTRACT

Members of the two expanding RNA subclasses termed C/D and H/ACA RNAs guide the 2'-O-methylations and pseudouridylations, respectively, of rRNA and spliceosomal RNAs (snRNAs). Here, we report on the identification of 13 novel human intron-encoded small RNAs (U94-U106) belonging to the two subclasses of modification guides. Seven of them are predicted to direct 2'-O-methylations in rRNA or snRNAs, while the remainder represent novel orphan RNA modification guides. From these, U100, which is exclusively detected in Cajal bodies (CBs), is predicted to direct modification of a U6 snRNA uridine, U(9), which to date has not been found to be pseudouridylated. Hence, within CBs, U100 might function in the folding pathway or other aspects of U6 snRNA metabolism rather than acting as a pseudouridylation guide. U106 C/D snoRNA might also possess an RNA chaperone activity only since its two conserved antisense elements match two rRNA sequences devoid of methylated nucleotides and located remarkably close to each other within the 18S rRNA secondary structure. Finally, we have identified a retrogene for U99 snoRNA located within an intron of the Siat5 gene, supporting the notion that retro-transposition events might have played a substantial role in the mobility and diversification of snoRNA genes during evolution.


Subject(s)
RNA, Small Nucleolar/genetics , RNA, Untranslated/genetics , Base Sequence , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Electrophoresis, Polyacrylamide Gel , HeLa Cells , Humans , In Situ Hybridization , Introns/genetics , Molecular Sequence Data , RNA, Small Nucleolar/metabolism , RNA, Untranslated/metabolism , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...