Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(2): 181-188, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352830

ABSTRACT

We have designed and developed novel and selective TLR7 agonists that exhibited potent receptor activity in a cell-based reporter assay. In vitro, these agonists significantly induced secretion of cytokines IL-6, IL-1ß, IL-10, TNFa, IFNa, and IP-10 in human and mouse whole blood. Pharmacokinetic and pharmacodynamic studies in mice showed a significant secretion of IFNα and TNFα cytokines. When combined with aPD1 in a CT-26 tumor model, the lead compound showed strong synergistic antitumor activity with complete tumor regression in 8/10 mice dosed using the intravenous route. Structure-activity relationship studies enabled by structure-based designs of TLR7 agonists are disclosed.

2.
ACS Med Chem Lett ; 15(2): 189-196, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352849

ABSTRACT

Small molecule toll-like receptor (TLR) 7 agonists have gathered considerable interest as promising therapeutic agents for applications in cancer immunotherapy. Herein, we describe the development and optimization of a series of novel TLR7 agonists through systematic structure-activity relationship studies focusing on modification of the phenylpiperidine side chain. Additional refinement of ADME properties culminated in the discovery of compound 14, which displayed nanomolar reporter assay activity and favorable drug-like properties. Compound 14 demonstrated excellent in vivo pharmacokinetic/pharmacodynamic profiles and synergistic antitumor activity when administered in combination with aPD1 antibody, suggesting opportunities of employing 14 in immuno-oncology therapies with immune checkpoint blockade agents.

3.
Bioorg Med Chem Lett ; 75: 128951, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36031020

ABSTRACT

We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.


Subject(s)
Lyases , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Glucocorticoids , Humans , Male , Mineralocorticoids , Prostatic Neoplasms, Castration-Resistant/drug therapy , Steroid 17-alpha-Hydroxylase , Testosterone , Xenobiotics
4.
J Med Chem ; 65(4): 3518-3538, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35108011

ABSTRACT

The identification of agonists of the stimulator of interferon genes (STING) pathway has been an area of intense research due to their potential to enhance innate immune response and tumor immunogenicity in the context of immuno-oncology therapy. Initial efforts to identify STING agonists focused on the modification of 2',3'-cGAMP (1) (an endogenous STING activator ligand) and other closely related cyclic dinucleotides (CDNs). While these efforts have successfully identified novel CDNs that have progressed into the clinic, their utility is currently limited to patients with solid tumors that STING agonists can be delivered to intratumorally. Herein, we report the discovery of a unique class of non-nucleotide small-molecule STING agonists that demonstrate antitumor activity when dosed intratumorally in a syngeneic mouse model.


Subject(s)
Membrane Proteins/agonists , Animals , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP/pharmacology , Cyclic GMP/chemistry , Cyclic GMP/pharmacology , Female , Humans , Immunity, Innate/drug effects , Immunotherapy/methods , Membrane Proteins/chemistry , Mice , Mice, Inbred BALB C , Models, Molecular , Neoplasms/immunology , Signal Transduction/drug effects , Small Molecule Libraries
5.
J Med Chem ; 64(19): 14247-14265, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34543572

ABSTRACT

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Drug Discovery , Phenylalanine/pharmacology , Proline/pharmacology , Tryptophan/pharmacology , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbazoles/administration & dosage , Carbazoles/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Proline/administration & dosage , Proline/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tryptophan/administration & dosage , Tryptophan/chemistry
6.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34267885

ABSTRACT

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

7.
J Org Chem ; 86(13): 8851-8861, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34126006

ABSTRACT

We describe a stereodefined synthesis of the newly identified non-natural phosphorothioate cyclic dinucleotide (CDN) STING agonist, BMT-390025. The new route avoids the low-yielding racemic approach using P(III)-based reagents, and the stereospecific assembly of the phosphorothioate linkages are forged via the recently invented P(V)-based platform of the so-called PSI (Ψ) reagent system. This P(V) approach allows for the complete control of chirality of the P-based linkages and enabled conclusive evidence of the absolute configuration. The new approach offers robust procedures for preparing the stereodefined CDN in eight steps starting from advanced nucelosides, with late-stage direct drop isolations and telescoped steps enabling an efficient scale-up that proceeded in an overall 15% yield to produce multigram amounts of the CDN.

8.
ACS Med Chem Lett ; 12(3): 443-450, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33732413

ABSTRACT

While the discovery of immune checkpoint inhibitors has led to robust, durable responses in a range of cancers, many patients do not respond to currently available therapeutics. Therefore, an urgent need exists to identify alternative mechanisms to augment the immune-mediated clearance of tumors. Hematopoetic progenitor kinase 1 (HPK1) is a serine-threonine kinase that acts as a negative regulator of T-cell receptor (TCR) signaling, to dampen the immune response. Herein we describe the structure-based discovery of isofuranones as inhibitors of HPK1. Optimization of the chemotype led to improvements in potency, selectivity, plasma protein binding, and metabolic stability, culminating in the identification of compound 24. Oral administration of 24, in combination with an anti-PD1 antibody, demonstrated robust enhancement of anti-PD1 efficacy in a syngeneic tumor model of colorectal cancer.

9.
ACS Med Chem Lett ; 12(3): 404-412, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738068

ABSTRACT

A new series with the tetrahydroisoquinoline-fused benzodiazepine (TBD) ring system combined with the surrogates of (1-methyl-1H-pyrrol-3-yl)benzene ("MPB") payloads were designed and executed for conjugation with a monoclonal antibody for anticancer therapeutics. DNA models helped in rationally identifying modifications of the "MPB" binding component and guided structure-activity relationship generation. This hybrid series of payloads exhibited excellent in vitro activity when tested against a panel of various cancer cell lines. One of the payloads was appended with a lysosome-cleavable peptide linker and conjugated with an anti-mesothelin antibody via a site-specific conjugation method mediated by the enzyme bacterial transglutaminase (BTGase). Antibody-drug conjugate (ADC) 50 demonstrated good plasma stability and lysosomal cleavage. A single intravenous dose of ADC 50 (5 or 10 nmol/kg) showed robust efficacy in an N87 gastric cancer xenograft model.

10.
ACS Med Chem Lett ; 12(3): 494-501, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738077

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.

11.
ACS Med Chem Lett ; 12(2): 288-294, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33603977

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.

12.
ACS Med Chem Lett ; 11(11): 2190-2194, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214828

ABSTRACT

Stability of antibody-drug conjugates (ADCs) in mouse serum is one of the critical requirements for the evaluation of ADCs in mouse tumor models. Described herein is a strategy to address the mouse serum instability of uncialamycin linker-payloads through various chemical approaches that involve modification of different parts of the linker and payload. This effort ultimately led to the identification of a m-amide p-aminobenzyl carbamate (MA-PABC) group that resulted in linkers with dramatic improvement of mouse serum stability without affecting the desired proteolytic cleavage.

13.
J Med Chem ; 63(22): 13913-13950, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33155811

ABSTRACT

A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 µmol/kg).


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/pharmacology , Benzodiazepines/chemistry , Drug Design , Immunoconjugates/pharmacology , Small Cell Lung Carcinoma/drug therapy , Stomach Neoplasms/drug therapy , Tetrahydroisoquinolines/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/chemistry , Apoptosis , Benzodiazepines/metabolism , Cell Proliferation , Female , G(M1) Ganglioside/analogs & derivatives , G(M1) Ganglioside/immunology , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mesothelin , Mice , Mice, SCID , Small Cell Lung Carcinoma/pathology , Stomach Neoplasms/pathology , Structure-Activity Relationship , Tetrahydroisoquinolines/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Org Lett ; 22(21): 8714-8719, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33074680

ABSTRACT

A short, scalable total synthesis of meayamycin is described by an approach that entails a longest linear sequence of 12 steps (22 steps overall) from commercially available chiral pool materials (ethyl l-lactate, BocNH-Thr-OH, and d-ribose) and introduces the most straightforward preparation of the right-hand subunit detailed to date. The use of the approach in the divergent synthesis of a representative series of O-acyl analogues is exemplified.


Subject(s)
Epoxy Compounds/chemistry , Epoxy Compounds/chemical synthesis , Oxygen/chemistry , Pyrans/chemistry , Pyrans/chemical synthesis , Acylation , Chemistry Techniques, Synthetic , Ribose/chemistry , Stereoisomerism
15.
Bioconjug Chem ; 31(10): 2350-2361, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32881482

ABSTRACT

Antibody-drug conjugates (ADCs) use antibodies to deliver cytotoxic payloads directly into tumor cells via specifically binding to the target cell surface antigens. ADCs can enhance the anti-tumor effects of antibodies, and increase the delivery of cytotoxic payloads to cancer cells with a better therapeutic index. An ADC was prepared with a potent carbamate-containing tubulysin analogue attached to an anti-mesothelin antibody via a Cit-Val dipeptide linker. An aniline functionality in the tubulysin analogue was created to provide a site of linker attachment via an amide bond that would be stable in systemic circulation. Upon ADC internalization into antigen-positive cancer cells, the Cit-Val dipeptide linker was cleaved by lysosomal proteases, and the drug was released inside the tumor cells. The naturally occurring acetate of tubulysin was modified to a carbamate to reduce acetate hydrolysis of the ADC in circulation and to increase the hydrophilicity of the drug. The ADC bearing the monoclonal anti-mesothelin antibody and the carbamate-containing tubulysin was highly potent and immunologically specific to H226 human lung carcinoma cells in vitro, and efficacious at well-tolerated doses in a mesothelin-positive OVCAR3 ovarian cancer xenograft mouse model.


Subject(s)
Antineoplastic Agents/chemistry , Carbamates/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Immunoconjugates/chemistry , Oligopeptides/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacology , Female , Humans , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Mesothelin , Mice , Mice, SCID , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Ovarian Neoplasms/drug therapy
16.
ACS Med Chem Lett ; 11(2): 172-178, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071685

ABSTRACT

Novel imidazole-based TGFßR1 inhibitors were identified and optimized for potency, selectivity, and pharmacokinetic and physicochemical characteristics. Herein, we report the discovery, optimization, and evaluation of a potent, selective, and orally bioavailable TGFßR1 inhibitor, 10 (BMS-986260). This compound demonstrated functional activity in multiple TGFß-dependent cellular assays, excellent kinome selectivity, favorable pharmacokinetic properties, and curative in vivo efficacy in combination with anti-PD-1 antibody in murine colorectal cancer (CRC) models. Since daily dosing of TGFßR1 inhibitors is known to cause class-based cardiovascular (CV) toxicities in preclinical species, a dosing holiday schedule in the anti-PD-1 combination efficacy studies was explored. An intermittent dosing regimen of 3 days on and 4 days off allowed mitigation of CV toxicities in one month dog and rat toxicology studies and also provided similar efficacy as once daily dosing.

17.
Bioorg Med Chem Lett ; 30(1): 126782, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767265

ABSTRACT

Uncialamycin is one of the structurally simpler and newer members of enediyne family of natural products. It exhibits highly potent activity against several types of bacteria and cancer cells. Described herein is a strategy for the targeted delivery of this cytotoxic agent to tumors using an antibody-drug conjugate (ADC) approach. Central to the design of ADC were the generation of potent and chemically stable uncialamycin analogues and attachment of protease cleavable linkers to newly realized phenolic handles to prepare linker-payloads. Conjugation of the linker-payloads to tumor targeting antibody, in vitro activity and in vivo evaluation are presented.


Subject(s)
Anthraquinones/chemistry , Anthraquinones/chemical synthesis , Antineoplastic Agents/therapeutic use , Immunoconjugates/chemistry , Anthraquinones/therapeutic use , Antineoplastic Agents/pharmacology , Humans , Structure-Activity Relationship
18.
Nat Chem ; 11(12): 1113-1123, 2019 12.
Article in English | MEDLINE | ID: mdl-31659311

ABSTRACT

A fundamental challenge in chemical biology and medicine is to understand and expand the fraction of the human proteome that can be targeted by small molecules. We recently described a strategy that integrates fragment-based ligand discovery with chemical proteomics to furnish global portraits of reversible small-molecule/protein interactions in human cells. Excavating clear structure-activity relationships from these 'ligandability' maps, however, was confounded by the distinct physicochemical properties and corresponding overall protein-binding potential of individual fragments. Here, we describe a compelling solution to this problem by introducing a next-generation set of fully functionalized fragments differing only in absolute stereochemistry. Using these enantiomeric probe pairs, or 'enantioprobes', we identify numerous stereoselective protein-fragment interactions in cells and show that these interactions occur at functional sites on proteins from diverse classes. Our findings thus indicate that incorporating chirality into fully functionalized fragment libraries provides a robust and streamlined method to discover ligandable proteins in cells.


Subject(s)
Molecular Probes/chemistry , Proteins/chemistry , Proteome/chemistry , Small Molecule Libraries/chemistry , Humans , Ligands , Molecular Structure , Stereoisomerism
19.
Bioorg Med Chem Lett ; 29(3): 466-470, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30579797

ABSTRACT

Uncialamycin analogs were evaluated as potential cytotoxic agents in an antibody-drug conjugate (ADC) approach to treating human cancer. These analogs were synthesized using Hauser annulations of substituted phthalides as a key step. A highly potent uncialamycin analog 3c with a valine-citrulline dipeptide linker was conjugated to an anti-mesothelin monoclonal antibody (mAb) through lysines to generate a meso-13 conjugate. This conjugate demonstrated subnanomolar potency (IC50 = 0.88 nM, H226 cell line) in in vitro cytotoxicity experiments with good immunological specificity to mesothelin-positive lung cancer cell lines. The potency and mechanism of action of this uncialamycin class of enediyne antitumor antibiotics make them attractive payloads in ADC-based cancer therapy.


Subject(s)
Anthraquinones/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Anthraquinones/chemistry , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Immunoconjugates/chemistry , Lung Neoplasms/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship
20.
ACS Med Chem Lett ; 9(11): 1117-1122, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30429955

ABSTRACT

The multifunctional cytokine TGFß plays a central role in regulating antitumor immunity. It has been postulated that inhibition of TGFß signaling in concert with checkpoint blockade will provide improved and durable immune response against tumors. Herein, we describe a novel series of 4-azaindole TGFß receptor kinase inhibitors with excellent selectivity for TGFß receptor 1 kinase. The combination of compound 3f and an antimouse-PD-1 antibody demonstrated significantly improved antitumor efficacy compared to either treatment alone in a murine tumor model.

SELECTION OF CITATIONS
SEARCH DETAIL