Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794461

ABSTRACT

The γ-aminobutyric acid (GABA) receptors play pivotal roles in the transmission of neuronal information in the nervous system of insects, which has led these proteins to be targeted by synthetic and natural products. Here, we assessed the insecticidal potential of the essential oil of Pectis brevipedunculata (Gardner) Sch. Bip., a neotropical Asteraceae plant used in traditional medicine, for controlling Drosophila suzukii (Matsumura) adults by feeding exposure. By using in silico approaches, we disentangle the contribution of GABA receptors and other potential neuronal targets (e.g., acetylcholinesterase, glutathione-S-transferases) in insects that may explain the essential oil differential activities against D. suzukii and two essential pollinator bees (Apis mellifera Linnaeus and Partamona helleri Friese). Neral (26.7%) and geranial (33.9%) were the main essential oil components which killed D. suzukii with an estimated median lethal concentration (LC50) of 2.25 µL/mL. Both pollinator forager bee species, which would likely contact this compound in the field, were more tolerant to the essential oil and did not have their diet consumptions affected by the essential oil. Based on the molecular predictions for the three potential targets and the essential oil main components, a higher affinity of interaction with the GABA receptors of D. suzukii (geranial -6.2 kcal/mol; neral -5.8 kcal/mol) in relation to A. mellifera (geranial -5.2 kcal/mol; neral -4.9 kcal/mol) would contribute to explaining the difference in toxicities observed in the bioassays. Collectively, our findings indicated the involvement of GABA receptors in the potential of P. brevipedunculata essential oil as an alternative tool for controlling D. suzukii.

2.
Tissue Cell ; 70: 101498, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33545532

ABSTRACT

Brontocoris tabidus (Signoret) (Heteroptera: Pentatomidae) is a zoophytophagous insect used for biological control in agriculture and forest systems because its nymphs and adults feed on insects and plants. The predatory Pentatomidae insert the mouthparts into the prey, releasing saliva to paralysis and kills the insect, as well as digest body parts to be sucked in a preliminary extra-oral digestion. In a short period of time, this insect shows the ability to feed again, suggesting the existence of a constant and abundant secretory cycle in the salivary glands. This study evaluated the morphological, histochemical and ultrastructural changes of the salivary glands of B. tabidus in fed and starved insects. The salivary complex of this predatory bug has a pair of bilobed salivary glands and a pair of tubular accessory salivary glands. The accessory glands have the lumen lined by a thick non-cuticular layer rich in glycoproteins. The secretory cells of the B. tabidus principal salivary glands have constant secretory activity, with each lobe producing different substances. The physiological processes that occur in the salivary gland of B. tabidus indicate that the insect needs to feed constantly, corroborating the potential of this insect to be used in biological control programs.


Subject(s)
Heteroptera , Salivary Glands , Animals , Bodily Secretions , Heteroptera/cytology , Heteroptera/physiology , Heteroptera/ultrastructure , Predatory Behavior , Saliva , Salivary Glands/cytology , Salivary Glands/physiology , Salivary Glands/ultrastructure
3.
PLoS One ; 13(11): e0207618, 2018.
Article in English | MEDLINE | ID: mdl-30444910

ABSTRACT

The use of plant essential oils has been shown to efficiently control insect pests of stored beans, significantly reducing the threats associated with synthetic insecticides. Here, we evaluated the potential of applications of essential oils of clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L., to control Callosobruchus maculatus, considered as one of the most cosmopolitan pests of stored beans. Using four combinations of couples (i.e., unexposed couples, exposed females, exposed males, and exposed couples), we also evaluated how sublethal exposure to these essential oils impacted C. maculatus oviposition. Bioassays results revealed that both essential oils exhibited insecticidal activities similar to the synthetic pyrethroid insecticide deltamethrin. Furthermore, oil dosage increments proportionately decreased the growth rate and reduced the losses in bean weight caused by cowpea weevils, and offspring emergence was almost abolished when parents were exposed to the LD20 of each essential oil. Finally, significant oviposition impairments were perceived only in couples where females were exposed (i.e., females exposed and exposed couples) to the LD20 of cinnamon and clove essential oils. Thus, by exhibiting similar insecticidal activities as synthetic insecticides and by significantly affecting the oviposition of sublethally exposed C. maculatus females, the cinnamon and clove essential oils represent valuable tools with potential of integration into the management of C. maculatus infestations.


Subject(s)
Cinnamomum zeylanicum/chemistry , Clove Oil/toxicity , Oils, Volatile/toxicity , Oviposition/drug effects , Weevils/anatomy & histology , Animals , Clove Oil/chemistry , Female , Male , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Oils/toxicity , Population Growth , Weevils/drug effects , Weevils/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...