Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 301: 122243, 2023 10.
Article in English | MEDLINE | ID: mdl-37480759

ABSTRACT

Lipid nanoparticles (LNPs) have shown great promise as delivery vehicles to transport messenger ribonucleic acid (mRNA) into cells and act as vaccines for infectious diseases including COVID-19 and influenza. The ionizable lipid incorporated within the LNP is known to be one of the main driving factors for potency and tolerability. Herein, we describe a novel family of ionizable lipids synthesized with a piperazine core derived from the HEPES Good buffer. These ionizable lipids have unique asymmetric tails and two dissimilar degradable moieties incorporated within the structure. Lipids tails of varying lengths, degrees of unsaturation, branching, and the inclusion of additional ester moieties were evaluated for protein expression. We observed several key lipid structure activity relationships that correlated with improved protein production in vivo, including lipid tails of 12 carbons on the ester side and the effect of carbon spacing on the disulfide arm of the lipids. Differences in LNP physical characteristics were observed for lipids containing an extra ester moiety. The LNP structure and lipid bilayer packing, visualized through Cryo-TEM, affected the amount of protein produced in vivo. In non-human primates, the Good HEPES LNPs formulated with an mRNA encoding an influenza hemagglutinin (HA) antigen successfully generated functional HA inhibition (HAI) antibody titers comparable to the industry standards MC3 and SM-102 LNPs, demonstrating their promise as a potential vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Animals , Humans , HEPES , Lipid Bilayers , Carbon , Esters , mRNA Vaccines
2.
Curr Drug Deliv ; 19(2): 182-191, 2022.
Article in English | MEDLINE | ID: mdl-34288837

ABSTRACT

Polyphenols comprise a large group of naturally occurring plant secondary metabolites with various nutritional and health benefits. They are safe and are found abundantly in the diet. Current research on polyphenols focuses on their mechanism and their benefits on human health. However, due to their low solubility and bioavailability, delivery from the conventional route has been a challenge and their translation into clinical applications has been limited. Topical and transdermal delivery of polymeric nanoparticles will act as a novel therapeutic approach for promising delivery of polyphenols. In this review, we have evaluated the existing scientific literature and summarized the potential use of polymeric nanoparticles as a carrier for polyphenolic compounds for delivery via topical and transdermal routes for the treatment of skin cancers such as melanoma.


Subject(s)
Melanoma , Nanoparticles , Administration, Cutaneous , Drug Delivery Systems , Humans , Polymers , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...