Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
ACS Nano ; 18(4): 3214-3233, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38215338

ABSTRACT

Development of effective vaccines for infectious diseases has been one of the most successful global health interventions in history. Though, while ideal subunit vaccines strongly rely on antigen and adjuvant(s) selection, the mode and time scale of exposure to the immune system has often been overlooked. Unfortunately, poor control over the delivery of many adjuvants, which play a key role in enhancing the quality and potency of immune responses, can limit their efficacy and cause off-target toxicities. There is a critical need for improved adjuvant delivery technologies to enhance their efficacy and boost vaccine performance. Nanoparticles have been shown to be ideal carriers for improving antigen delivery due to their shape and size, which mimic viral structures but have been generally less explored for adjuvant delivery. Here, we describe the design of self-assembled poly(ethylene glycol)-b-poly(lactic acid) nanoparticles decorated with CpG, a potent TLR9 agonist, to increase adjuvanticity in COVID-19 vaccines. By controlling the surface density of CpG, we show that intermediate valency is a key factor for TLR9 activation of immune cells. When delivered with the SARS-CoV-2 spike protein, CpG nanoparticle (CpG-NP) adjuvant greatly improves the magnitude and duration of antibody responses when compared to soluble CpG, and results in overall greater breadth of immunity against variants of concern. Moreover, encapsulation of CpG-NP into injectable polymeric-nanoparticle (PNP) hydrogels enhances the spatiotemporal control over codelivery of CpG-NP adjuvant and spike protein antigen such that a single immunization of hydrogel-based vaccines generates humoral responses comparable to those of a typical prime-boost regimen of soluble vaccines. These delivery technologies can potentially reduce the costs and burden of clinical vaccination, both of which are key elements in fighting a pandemic.


Subject(s)
COVID-19 , Nanoparticles , Spike Glycoprotein, Coronavirus , Vaccines , Humans , COVID-19 Vaccines , Toll-Like Receptor 9/agonists , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic , Antigens , Nanoparticles/chemistry , Antibodies, Viral
2.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934770

ABSTRACT

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Subject(s)
Kinesins , Osteogenesis Imperfecta , Animals , Humans , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Carrier Proteins/genetics , Down-Regulation , Kinesins/genetics , Kinesins/metabolism , NIH 3T3 Cells , Proteomics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
Diabetol Metab Syndr ; 15(1): 190, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37759290

ABSTRACT

BACKGROUND: Glycaemic control of Type 1 Diabetes Mellitus (T1DM) remains a challenge due to hypoglycaemic episodes and the burden of insulin self-management. Advancements have been made with the development of automated insulin delivery (AID) devices, yet, previous reviews have only assessed the use of AID over days or weeks, and potential benefits with longer time of AID use in this population remain unclear. METHODS:  We performed a systematic review and meta-analysis of randomised controlled trials comparing AID (hybrid and fully closed-loop systems) to usual care (sensor augmented pumps, multiple daily insulin injections, continuous glucose monitoring and predictive low-glucose suspend) for adults and children with T1DM with a minimum duration of 3 months. We searched PubMed, Embase, Cochrane Central, and Clinicaltrials.gov for studies published up until April 4, 2023. Main outcomes included time in range 70-180 mg/dL as the primary outcome, and change in HbA1c (%, mmol/mol), glucose variability, and psychosocial impact (diabetes distress, treatment satisfaction and fear of hypoglycaemia) as secondary outcomes. Adverse events included diabetic ketoacidosis (DKA) and severe hypoglycaemia. Statistical analyses were conducted using mean differences and odds ratios. Sensitivity analyses were performed according to age, study duration and type of AID device. The protocol was registered in PROSPERO, CRD42022366710. RESULTS: We identified 25 comparisons from 22 studies (six crossover and 16 parallel designs) including a total of 2376 participants (721 in adult studies, 621 in paediatric studies, and 1034 in combined studies) which were eligible for analysis. Use of AID devices ranged from 12 to 96 weeks. Patients using AID had 10.87% higher time in range [95% CI 9.38 to 12.37; p < 0.0001, I2 = 87%) and 0.37% (4.77 mmol/mol) lower HbA1c (95% CI - 0.49% (- 6.39 mmol/mol) to - 0.26 (- 3.14 mmol/mol); p < 0·0001, I2 = 77%]. AID systems decreased night hypoglycaemia, time in hypoglycaemia and hyperglycaemia and improved patient distress, with no increase in the risk of DKA or severe hypoglycaemia. No difference was found regarding treatment satisfaction or fear of hypoglycaemia. Among children, there was no difference in glucose variability or time spent in hypoglycaemia between the use of AID systems or usual care. In sensitivity analyses, results remained consistent with the overall analysis favouring AID. CONCLUSION: The use of AID systems over 12 weeks, regardless of technical or clinical differences, improved glycaemic outcomes and diabetes distress without increasing the risk of adverse events in adults and children with T1DM.

4.
Minerva Pediatr (Torino) ; 74(6): 650-671, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36149093

ABSTRACT

INTRODUCTION: Autoimmune diseases account for a cumulative overall prevalence of about 3-5% worldwide. Among them, autoimmune thyroid diseases (ATDs) are the most common and comprise two main entities: Hashimoto's thyroiditis (HT) and Graves-Basedow disease (GD). The pathogenesis of ATDs remains not fully elucidated, however the role of microbioma has been proposed. Gut microbiota exert an important influence on the intestinal barrier, nutrient metabolism and immune system development and functions. EVIDENCE ACQUISITION: In this review, we describe on the main features of ATDs in pediatrics, focusing on the reciprocal influence between gut microbiota, thyroid hormone metabolism and thyroid autoimmunity and consider the role of probiotics and other microbiota-targeted therapies in thyroid diseases with a perspective on pediatric endocrinology. EVIDENCE SYNTHESIS: Microbiome affects both endogenous and exogenous thyroid hormone metabolism and influences the absorption of minerals important to the thyroid function, which are iodine, selenium, zinc and iron. The alteration of the gut microbiota, with the consequent modifications in the barrier function and the increased gut permeability, seems involved in the development of autoimmune and chronic inflammatory diseases, including ATDs. The supplementation with probiotics showed beneficial effects on the thyroid hormone and thyroid function because this strategy could restore the intestinal eubiosis and the good strain microorganism proliferation. CONCLUSIONS: Even though the evidence about the interaction between microbiota and ATDs in pediatric patients is limited, the promising results obtained in the adult population, and in other autoimmune disorders affecting children, highlight the need of for further research in the pediatric field.


Subject(s)
Autoimmune Diseases , Gastrointestinal Microbiome , Graves Disease , Hashimoto Disease , Probiotics , Thyroid Diseases , Adult , Humans , Child , Hashimoto Disease/therapy , Hashimoto Disease/etiology , Autoimmune Diseases/therapy , Thyroid Diseases/complications , Graves Disease/complications , Probiotics/therapeutic use , Thyroid Hormones
5.
Minerva Pediatr (Torino) ; 74(6): 632-649, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35708037

ABSTRACT

INTRODUCTION: Obesity is a complex pathology, globally spread, with a multifactorial pathogenesis, strictly linked with lifestyle, hormones, genetic and epigenetic factors. Evidence supports that obesity, and its comorbidities, are related to changes in gut microbiota, partially responsible of the modulation of energy metabolism. EVIDENCE ACQUISITION: Pediatric obesity has been associated with lower bacterial diversity and differences in composition of the gut microbiota, also varying according to the metabolic status of obese subjects. Indeed, differences in distributions and activity of microorganisms in the gut of metabolically healthy and unhealthy obese children have been highlighted. EVIDENCE SYNTHESIS: Based on human studies, this review aims to discuss gut microbiota alterations in obese children and adolescents and its role in obese-related complications. Moreover, the role of biotics (probiotics, prebiotics, synbiotics and -marginally- postbiotics) has been analyzed as modulator of obesity-related dysbiosis. CONCLUSIONS: As a conclusion, a deeper knowledge about biotic mechanisms of action would be of great interest to implement the clinical care of children and adolescents with obesity and related comorbidities.


Subject(s)
Gastrointestinal Microbiome , Pediatric Obesity , Probiotics , Synbiotics , Child , Humans , Adolescent , Pediatric Obesity/complications , Pediatric Obesity/therapy , Prebiotics , Probiotics/therapeutic use
6.
Nat Rev Mater ; 7(3): 174-195, 2022.
Article in English | MEDLINE | ID: mdl-34603749

ABSTRACT

Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.

7.
Adv Mater ; 33(51): e2104362, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651342

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime-boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Hydrogels/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , CpG Islands/genetics , Female , Humans , Immunity, Humoral , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polymers/chemistry , Protein Domains/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Vaccines, Subunit/chemistry , Vaccines, Subunit/metabolism
8.
J Biomed Mater Res A ; 109(11): 2173-2186, 2021 11.
Article in English | MEDLINE | ID: mdl-33955657

ABSTRACT

Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.


Subject(s)
Adjuvants, Immunologic , Delayed-Action Preparations , Hydrogels , Immunity, Humoral , Influenza Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology
9.
bioRxiv ; 2021 Aug 29.
Article in English | MEDLINE | ID: mdl-33821276

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-437792

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

11.
J Am Geriatr Soc ; 65(8): 1816-1820, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28422279

ABSTRACT

OBJECTIVES: To evaluate the safety and efficacy of endovascular therapy in elderly adults treated for acute ischemic stroke. DESIGN: Retrospective cohort study. SETTING: Comprehensive Stroke Center, University of Tor Vergata, Rome, Italy. PARTICIPANTS: Elderly adults treated for acute ischemic stroke (N = 219). MEASUREMENTS: Participants were divided into two groups based on their age (n = 62, ≥80; n = 157, <80). Baseline and procedural characteristics, safety outcomes such as intracranial hemorrhage (ICH) and mortality and efficacy outcomes such as successful reperfusion and 3-month good clinical outcome of the two groups were compared. Mutivariable analysis was performed to identify predictors of clinical outcome. RESULTS: Intravenous thrombolysis was more frequent (67.7% vs 52.8%, P = .04), and onset to reperfusion time was shorter (318.7 ± 128.7 vs 282 ± 53.5, P = .02) in participants aged 80 and older, but no between-group differences were found in terms of successful reperfusion (69% vs 63%, P = .4), good clinical outcome (30.6% vs 34.3%, P = .6), any (37% vs 37.5%, P > .99) or symptomatic (11% vs 14%, P = .6) ICH, or mortality (40.3% vs 29.2%, P = .14). Multivariable analysis revealed that, in the older group, onset National Institute of Health Stroke Scale (NIHSS) score (odds ratio (OR) = 0.65, 95% confidence interval (CI) = 0.44-0.96, P = .03) and 24-hour clinical improvement (OR = 141.13, 95% CI = 2.96-6,720.7, P = .01) were independent predictors of 3-month functional independence. CONCLUSION: These findings suggest that endovascular treatment for stroke in selected elderly adults could be safe and effective. Major determinants of outcome in this subgroup of elderly patients are presentation NIHSS score and 24-hour clinical improvement.


Subject(s)
Brain Ischemia/surgery , Endovascular Procedures/methods , Stroke/surgery , Thrombectomy , Aged, 80 and over , Brain Ischemia/complications , Brain Ischemia/mortality , Female , Humans , Italy , Male , Middle Aged , Retrospective Studies , Stroke/complications , Stroke/mortality , Treatment Outcome
12.
Nanotechnology ; 22(30): 305708, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21719975

ABSTRACT

The synthesis and properties of Mg((x))Zn((1 - x))Fe(2)O(4) spinel ferrites as a low-toxicity alternative to the technologically significant Ni((x))Zn((1 - x))Fe(2)O(4) ferrites are reported. Ferrite nanoparticles have been formed through both the polyol and aqueous co-precipitation methods that can be readily adapted to industrial scale synthesis to satisfy the demand of a variety of commercial applications. The structure, morphology and magnetic properties of Mg((x))Zn((1 - x))Fe(2)O(4) were studied as a function of composition and particle size. Scanning electron microscopy images show particles synthesised by the aqueous co-precipitation method possess a broad size distribution (i.e. ∼ 80-120 nm) with an average diameter of the order of 100 nm ± 20 nm and could be produced in high process yields of up to 25 g l(-1). In contrast, particles synthesised by the polyol-based co-precipitation method possess a narrower size distribution with an average diameter in the 30 nm ± 5 nm range but are limited to smaller yields of ∼ 6 g l(-1). Furthermore, the polyol synthesis method was shown to control average particle size by varying the length of the glycol surfactant chain. Particles prepared by both methods are compared with respect to their phase purity, crystal structure, morphology, magnetic properties and microwave properties.

13.
Nanotechnology ; 20(44): 445606, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19809120

ABSTRACT

Nanorods of goethite, i.e. alpha-FeOOH, were mixed with BaCO3, dispersed in a polymer solution, and oriented under a 90 kOe magnetic field during polymerization. The orientation arose principally from the interaction of the magnetic field with the anisotropic antiferromagnetism of the goethite particles. The oriented antiferromagnetic particles act as seeds for the topochemical growth of BaFe12O19 ferrite grains along the [0001] direction. The degree of grain orientation was determined using magnetic measurements and orientation distribution functions and pole figures determined by electron backscatter diffraction analysis.

14.
Nanotechnology ; 20(18): 185704, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19420627

ABSTRACT

Mn ferrite (MnFe(2)O(4)) nanoparticles, having diameters from 4 to 50 nm, were synthesized using a modified co-precipitation technique in which mixed metal chloride solutions were added to different concentrations of boiling NaOH solutions to control particle growth rate. Thermomagnetization measurements indicated an increase in Néel temperature corresponding to increased particle growth rate and particle size. The Néel temperature is also found to increase inversely proportionally to the cation inversion parameter, delta, appearing in the formula (Mn(1-delta)Fe(delta))(tet)[Mn(delta)Fe(2-delta)](oct)O(4). These results contradict previously published reports of trends between Néel temperature and particle size, and demonstrate the dominance of cation inversion in determining the strength of superexchange interactions and subsequently Néel temperature in ferrite systems. The particle surface chemistry, structure, and magnetic spin configuration play secondary roles.


Subject(s)
Crystallization/methods , Manganese/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanotechnology/methods , Cations , Fractional Precipitation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Temperature
15.
Phys Rev Lett ; 103(23): 239701; discussion 239702, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-20366185
18.
Phys Rev B Condens Matter ; 46(21): 13964-13966, 1992 Dec 01.
Article in English | MEDLINE | ID: mdl-10003463
SELECTION OF CITATIONS
SEARCH DETAIL
...