Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Signal ; 117: 111113, 2024 05.
Article in English | MEDLINE | ID: mdl-38395185

ABSTRACT

The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength. Here, we investigated the functional changes occurring in neurons upon chronic inactivity and the role of the purinergic signaling, connexin43 and pannexin1 hemichannels in this process. By using hippocampal dissociated cultures, we showed that blocking connexin43 and pannexin1 hemichannels decreases the amount of extracellular ATP. Moreover, Ca2+ imaging assays using Fluo-4/AM revealed that blocking connexin43, neuronal P2X7Rs and pannexin1 hemichannels decreases the amount of basal Ca2+ in neurons. A significant impairment in synaptic vesicle pool size was also evidenced under these conditions. Interestingly, rescue experiments where Panx1HCs are blocked showed that the compensatory adjustment of cytosolic Ca2+ was recovered after P2X7Rs activation, suggesting that Panx1 acts downstream P2X7Rs. These changes were accompanied by a modulation of neuronal permeability, as revealed by ethidium bromide uptake experiments. In particular, the permeability of neuronal P2X7Rs and pannexin1 hemichannels is increased upon 24 h of inactivity. Taken together, we have uncovered a role for connexin43-dependent ATP release and neuronal P2X7Rs and pannexin1 hemichannels in the adjustment of presynaptic strength by modulating neuronal permeability, the entrance of Ca2+ into neurons and the size of the recycling pool of synaptic vesicles.


Subject(s)
Connexin 43 , Connexins , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism , Connexin 43/metabolism , Connexins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Animals , Mice , Rats , Receptors, Purinergic P2X7/metabolism
2.
Sci Rep ; 13(1): 16796, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798310

ABSTRACT

Emerging evidences suggest that immune receptors participate in diverse microglial and macrophage functions by regulating their immunometabolism, inflammatory phenotype and phagocytosis. CD300f, a TREM2-like lipid sensing immune receptor, that integrates activating and inhibitory cell-signalling pathways, modulates inflammation, efferocytosis and microglial metabolic fitness. In particular, CD300f overexpression was described to be neuroprotective after an acute brain injury, suggesting a role for this immune receptor in neurotrophic interactions. Thus, we hypothesised that CD300f modulates neuronal survival through neuron-microglial interactions. In order to study its biological function, we used in vitro and in vivo approaches, CD300f-/- animals and rCD300f-Fc, a fusion protein that interrupts the endogen interaction between CD300f receptor-ligands. In hippocampal cocultures containing neurons and mixed glia, we observed that rCD300f-Fc, but not control IgGs induced neuronal death. In accordance, in vivo studies performed by injecting rCD300f-Fc or control IgGs into rat or WT or CD300 KO mice neocortex, showed an increased lesioned area after a penetrating brain injury. Interestingly, this neuronal death was dependent on glia, and the neurotoxic mechanism did not involve the increase of proinflammatory cytokines, the participation of NMDA receptors or ATP release. However, exogenous addition of glial cell line-derived neurotrophic factor (GDNF) prevented this process. Taken together, our results suggest that CD300f modulates neuronal survival in vitro and after a penetrating brain injury in vivo and that CD300f inhibition alters microglial phenotype generating a neurotoxic microenvironment.


Subject(s)
Head Injuries, Penetrating , Microglia , Rats , Mice , Animals , Microglia/metabolism , Head Injuries, Penetrating/metabolism , Neurons , Inflammation/metabolism , Macrophages
3.
Purinergic Signal ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713157

ABSTRACT

Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.

4.
Front Cell Neurosci ; 17: 1288676, 2023.
Article in English | MEDLINE | ID: mdl-38164435

ABSTRACT

The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.

6.
Mol Neurobiol ; 57(6): 2856-2869, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32388797

ABSTRACT

A key feature of neurotransmission is its ability to adapt to changes in neuronal environment, which is essential for many brain functions. Homeostatic synaptic plasticity (HSP) emerges as a compensatory mechanism used by neurons to adjust their excitability in response to changes in synaptic activity. Recently, glial cells emerged as modulators for neurotransmission by releasing gliotransmitters into the synaptic cleft through pathways that include P2X7 receptors (P2X7R), connexons, and pannexons. However, the role of gliotransmission in the activity-dependent adjustment of presynaptic strength is still an open question. Here, we investigated whether glial cells participate in HSP upon chronic inactivity and the role of adenosine triphosphate (ATP), connexin43 hemichannels (Cx43HCs), and pannexin1 (Panx1) channels in this process. We used immunocytochemistry against vesicular glutamate transporter 1 (vGlut1) to estimate changes in synaptic strength in hippocampal dissociated cultures. Pharmacological manipulations indicate that glial-derived ATP and P2X7R are required for HSP. In addition, inhibition of Cx43 and Panx1 channels reveals a pivotal role for these channels in the compensatory adjustment of synaptic strength, emerging as new pathways for ATP release upon inactivity. The involvement of Panx1 channels was confirmed by using Panx1-deficient animals. Lacking Panx1 in neurons is sufficient to prevent the P2X7R-dependent upregulation of presynaptic strength; however, the P2X7R-dependent compensatory adjustment of synapse density requires both neuronal and glial Panx1. Together, our data supports an essential role for glial ATP signaling and Cx43HCs and Panx1 channels in the homeostatic adjustment of synaptic strength in hippocampal cultures upon chronic inactivity.


Subject(s)
Adenosine Triphosphate/metabolism , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Connexin 43/metabolism , Connexins/genetics , Hippocampus/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Rats , Receptors, Purinergic P2X7/metabolism
7.
Proc Natl Acad Sci U S A ; 117(12): 6651-6662, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152116

ABSTRACT

A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.


Subject(s)
Anhedonia , Depressive Disorder, Major/pathology , Inflammation/etiology , Microglia/pathology , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Receptors, Immunologic/physiology , Animals , Behavior, Animal , Cohort Studies , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/psychology , Female , Gene Expression Profiling , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Synapses
8.
J Cell Biol ; 203(2): 175-86, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24165934

ABSTRACT

Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.


Subject(s)
Neuronal Plasticity , Neurons/physiology , Synapses/physiology , Synaptic Transmission , Animals , Cell Communication , Homeostasis , Humans , Long-Term Potentiation , Long-Term Synaptic Depression , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synapses/metabolism
9.
Nat Commun ; 3: 814, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569362

ABSTRACT

Brain function requires neuronal activity-dependent energy consumption. Neuronal energy supply is controlled by molecular mechanisms that regulate mitochondrial dynamics, including Kinesin motors and Mitofusins, Miro1-2 and Trak2 proteins. Here we show a new protein family that localizes to the mitochondria and controls mitochondrial dynamics. This family of proteins is encoded by an array of armadillo (Arm) repeat-containing genes located on the X chromosome. The Armcx cluster is unique to Eutherian mammals and evolved from a single ancestor gene (Armc10). We show that these genes are highly expressed in the developing and adult nervous system. Furthermore, we demonstrate that Armcx3 expression levels regulate mitochondrial dynamics and trafficking in neurons, and that Alex3 interacts with the Kinesin/Miro/Trak2 complex in a Ca(2+)-dependent manner. Our data provide evidence of a new Eutherian-specific family of mitochondrial proteins that controls mitochondrial dynamics and indicate that this key process is differentially regulated in the brain of higher vertebrates.


Subject(s)
Armadillo Domain Proteins/metabolism , Carrier Proteins/metabolism , Evolution, Molecular , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Armadillo Domain Proteins/genetics , Carrier Proteins/genetics , Cell Line , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Multigene Family , Nerve Tissue Proteins/genetics , Protein Binding , Protein Transport , rho GTP-Binding Proteins/genetics
10.
Curr Opin Neurobiol ; 22(3): 516-21, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21983330

ABSTRACT

Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron.


Subject(s)
Homeostasis , Nerve Net/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Synapses/physiology , Animals
11.
Nat Neurosci ; 15(1): 81-9, 2011 Dec 04.
Article in English | MEDLINE | ID: mdl-22138644

ABSTRACT

N-cadherin is a homophilic adhesion protein that remains expressed at mature excitatory synapses beyond its developmental role in synapse formation. We investigated the trans-synaptic activity of N-cadherin in regulating synapse function in rodent cultured hippocampal neurons using optical methods and electrophysiology. Interfering with N-cadherin in postsynaptic neurons reduced basal release probability (p(r)) at inputs to the neuron, and this trans-synaptic impairment of release accompanied impaired vesicle endocytosis. Moreover, loss of the GluA2 AMPA-type glutamate receptor subunit, which decreased p(r) by itself, occluded the interference with postsynaptic N-cadherin. The loss of postsynaptic N-cadherin activity, however, did not affect the compensatory upregulation of p(r) induced by chronic activity silencing, whereas postsynaptic ß-catenin deletion blocked this presynaptic homeostatic adaptation. Our findings suggest that postsynaptic N-cadherin helps link basal pre- and postsynaptic strengths to control the p(r) offset, whereas the p(r) gain adjustment requires a distinct trans-synaptic pathway involving ß-catenin.


Subject(s)
Cadherins/metabolism , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , beta Catenin/metabolism , Animals , Cells, Cultured , Hippocampus/metabolism , Mice , Rats , Receptors, AMPA/metabolism , Synaptic Vesicles/metabolism
12.
PLoS One ; 5(8): e12003, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20706633

ABSTRACT

Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.


Subject(s)
Brain/cytology , Brain/growth & development , Neural Cell Adhesion Molecules/metabolism , Sialoglycoproteins/metabolism , Synapses/metabolism , Animals , Brain/metabolism , Brain/physiology , Cytoskeletal Proteins/metabolism , Female , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Developmental , Mice , Neural Cell Adhesion Molecules/deficiency , Neurites/metabolism , Phosphoproteins/metabolism , Pregnancy , Sialic Acids/metabolism , Sialoglycoproteins/deficiency , Sodium-Hydrogen Exchangers/metabolism , rho GTP-Binding Proteins , rhoA GTP-Binding Protein/metabolism
13.
Gene Expr Patterns ; 5(3): 349-54, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15661640

ABSTRACT

We studied the expression pattern of the major renal protein Podocalyxin during the development of mouse brain using in situ hybridization. Podocalyxin mRNA was widely expressed at least from E14, the first age we studied, and expression remained high until adulthood. The highest levels of expression were postnatal. Podocalyxin expression was particularly elevated in the cortical plate, the hippocampus and cerebellum, and in several basal forebrain nuclei.


Subject(s)
Brain/growth & development , Brain/metabolism , Sialoglycoproteins/biosynthesis , Sialoglycoproteins/genetics , Animals , Blotting, Northern , Brain/embryology , Cerebellum/growth & development , Cerebellum/metabolism , Gene Expression Regulation, Developmental , Hippocampus/growth & development , Hippocampus/metabolism , In Situ Hybridization , Mice , Prosencephalon/growth & development , Prosencephalon/metabolism
14.
J Med Virol ; 71(2): 305-12, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12938207

ABSTRACT

The antigenic and genetic diversity of G glycoprotein from 25 human respiratory viruses (group A) isolated during nine consecutive epidemics (1993-2001) in Montevideo, Uruguay, and 7 strains isolated in Buenos Aires, Argentina, in the same period were analyzed. Genetic variability was evaluated by partial sequence of the G protein gene. Phylogenetic analysis indicated that most Uruguayan and Argentinean group A isolates clustered into three genotypes: GA5, GA2, and GA1. Some strains clustered into the GA3 genotype characterized previously. The antigenic analysis was carried out with a panel of anti-G monoclonal antibodies that recognized conserved and strain-specific epitopes. A close correlation between the antigenic and genetic relatedness of the strains analyzed was observed.


Subject(s)
Antigenic Variation , Disease Outbreaks , Genetic Variation , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/classification , Amino Acid Sequence , Antigens, Viral , Argentina/epidemiology , Child, Preschool , Humans , Molecular Sequence Data , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Sequence Analysis, DNA , Uruguay/epidemiology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL