Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Mol Cell Biochem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717684

ABSTRACT

Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also trying to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm maturation, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well as the impact of RNA players, will help to tackle infertility.

2.
iScience ; 26(11): 108105, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867957

ABSTRACT

Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical-, and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics.

3.
Explor Target Antitumor Ther ; 4(2): 170-207, 2023.
Article in English | MEDLINE | ID: mdl-37205308

ABSTRACT

The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.

4.
Article in English | MEDLINE | ID: mdl-37047991

ABSTRACT

Currently, about one in five workers is employed in night shift work in Europe. Shift work including nighttime hours is essential in several activities, especially the healthcare sector. Importantly, night working may be associated with the occurrence of sleep disorders or work-related stress, both potentially augmenting the risk of errors and accidents at work. This study aims to examine the presence of neurobehavioral alterations that can be a consequence of shift working and concurrent misalignment of the sleep times and circadian rhythms. Nurses (n = 102) employed at a University Hospital located in North-Eastern Sicily, Italy, voluntarily participated in this pilot study. During medical surveillance, morning and evening salivary samples were collected, and seven psychodiagnostics questionnaires were administered to all the subjects. On one hand, the salivary levels of stress-related biomarkers (cortisol and alpha-amylase) and a circadian biomarker (melatonin) were evaluated. On the other hand, several neurobehavioral features were assessed, including depression, anxiety, work-related, and sleep issues. Interestingly, a positive relationship between salivary morning cortisol and depression scale, as well as a negative relationship between salivary morning alpha-amylase and work ability scale, were observed. Based on these results, the integration of subjective questionnaire outcomes and objective salivary biomarker quantification can help to identify workers with increased susceptibility to developing neurobehavioral alterations. This approach may contribute to ameliorating preventive strategies towards sensitive categories, such as nurses working rotation shifts.


Subject(s)
Hydrocortisone , Nurses , Humans , Pilot Projects , Rotation , Sleep , Circadian Rhythm , Biomarkers , alpha-Amylases , Sicily , Work Schedule Tolerance
5.
Pharmaceutics ; 15(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37111737

ABSTRACT

Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.

6.
J Transl Med ; 21(1): 195, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918929

ABSTRACT

BACKGROUND: Gut microbiota modulation has been demonstrated to be effective in protecting patients against detrimental effects of anti-cancer therapies, as well as to improve the efficacy of certain anti-cancer treatments. Among the most characterized probiotics, Lactobacillus rhamnosus GG (LGG) is currently utilized in clinics to alleviate diarrhea, mucositis or intestinal damage which might be associated with several triggers, including Clostridium difficile infections, inflammatory gut diseases, antibiotic consumption, chemotherapy or radiation therapy. Here, we investigate whether LGG cell-free supernatant (LGG-SN) might exert anti-proliferative activity toward colon cancer and metastatic melanoma cells. Moreover, we assess the potential adjuvant effect of LGG-SN in combination with anti-cancer drugs. METHODS: LGG-SN alone or in combination with either 5-Fuorouracil and Irinotecan was used to treat human colon and human melanoma cancer cell lines. Dimethylimidazol-diphenyl tetrazolium bromide assay was employed to detect cellular viability. Trypan blue staining, anti-cleaved caspase-3 and anti-total versus anti-cleaved PARP western blots, and annexin V/propidium iodide flow cytometry analyses were used to assess cell death. Flow cytometry measurement of cellular DNA content (with propidium iodide staining) together with qPCR analysis of cyclins expression were used to assess cell cycle. RESULTS: We demonstrate that LGG-SN is able to selectively reduce the viability of cancer cells in a concentration-dependent way. While LGG-SN does not exert any anti-proliferative activity on control fibroblasts. In cancer cells, the reduction in viability is not associated with apoptosis induction, but with a mitotic arrest in the G2/M phase of cell cycle. Additionally, LGG-SN sensitizes cancer cells to both 5-Fluorouracil and Irinotecan, thereby showing a positive synergistic action. CONCLUSION: Overall, our results suggest that LGG-SN may contain one or more bioactive molecules with anti-cancer activity which sensitize cancer cells to chemotherapeutic drugs. Thus, LGG could be proposed as an ideal candidate for ground-breaking integrated approaches to be employed in oncology, to reduce chemotherapy-related side effects and overcome resistance or relapse issues, thus ameliorating the therapeutic response in cancer patients.


Subject(s)
Lacticaseibacillus rhamnosus , Melanoma , Probiotics , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Propidium , Colon , Adjuvants, Immunologic , Probiotics/pharmacology , Probiotics/therapeutic use
7.
Arch Toxicol ; 97(1): 3-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36260104

ABSTRACT

Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.


Subject(s)
Noncommunicable Diseases , Polyphenols , Humans , Polyphenols/therapeutic use , Polyphenols/metabolism , Biological Availability , Quality of Life , Diet , Chronic Disease , Vegetables/metabolism , Noncommunicable Diseases/prevention & control
8.
Article in English | MEDLINE | ID: mdl-36078202

ABSTRACT

Mancozeb (MNZ) is a fungicide commonly employed in many countries worldwide. This study assesses MNZ absorption dynamics in 19 greenhouse farmers, specifically following dermal exposure, aiming to verify the efficacy of both preventive actions and protective equipment. For data collection, a multi-assessment approach was used, which included a survey to record study population features. MNZ exposure was assessed through the indirect measurement of ethylene thiourea (ETU), widely employed as an MNZ biomarker. The ETU concentration was measured with the patch method, detecting environmental ETU trapped in filter paper pads, applied both on skin and working clothes, during the 8 h work shift. Urine and serum end-of-shift samples were also collected to measure ETU concentrations and well-known oxidative stress biomarkers, respectively, namely reactive oxygen metabolites (ROMs), advanced oxidation protein products (AOPPs), and biological antioxidant potential (BAP). It was observed that levels of ETU absorbed and ETU excreted were positively correlated. Additionally, working clothes effectively protected workers from MNZ exposure. Moreover, following stratification of the samples based on the specific working duty (i.e., preparation and spreading of MNZ and manipulation of MNZ-treated seedlings), it was found that the spreading group had higher ETU-related risk, despite lower chronic exposure levels. AOPP and ROM serum levels were higher in MNZ-exposed subjects compared with non-exposed controls, whereas BAP levels were significantly lower. Such results support an increase in the oxidative stress upon 8 h MNZ exposure at work. In particular, AOPP levels demonstrated a potential predictive role, as suggested by the contingency analysis results. Overall, this study, although conducted in a small group, confirms that ETU detection in pads, as well as in urine, might enable assessment of the risk associated with MNZ exposure in greenhouse workers. Additionally, the measurement of circulating oxidative stress biomarkers might help to stratify exposed workers based on their sensitivity to MNZ. Pivotally, the combination of both ETU measurement and biological monitoring might represent a novel valuable combined approach for risk assessment in farmhouse workers exposed to pesticides. In the future, these observations will help to implement effective preventive strategies in the workplace for workers at higher risk, including greenhouse farmers who are exposed to pesticides daily, as well as to clarify the occupational exposure levels to ETU.


Subject(s)
Ethylenethiourea , Maneb , Occupational Exposure , Oxidative Stress , Pesticides , Zineb , Advanced Oxidation Protein Products/metabolism , Advanced Oxidation Protein Products/pharmacology , Biomarkers , Ethylenethiourea/analysis , Ethylenethiourea/metabolism , Ethylenethiourea/pharmacology , Farmers , Humans , Maneb/adverse effects , Maneb/toxicity , Occupational Exposure/analysis , Pesticides/analysis , Pesticides/toxicity , Zineb/adverse effects , Zineb/toxicity
9.
Adv Healthc Mater ; 11(20): e2201203, 2022 10.
Article in English | MEDLINE | ID: mdl-35856921

ABSTRACT

Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs  in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.


Subject(s)
Extracellular Vesicles , Neuroblastoma , Parkinson Disease , Humans , Astrocytes/metabolism , Parkinson Disease/metabolism , Neurotoxins/metabolism , Neurotoxins/pharmacology , Caspase 3/metabolism , Neuroblastoma/metabolism , Dopaminergic Neurons/metabolism , Mitochondria , Cell Death , Extracellular Vesicles/metabolism , Dopamine/pharmacology , Adenosine Triphosphate/metabolism
10.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740092

ABSTRACT

The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.

11.
Article in English | MEDLINE | ID: mdl-35742265

ABSTRACT

The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.


Subject(s)
Epigenesis, Genetic , MicroRNAs , Occupational Exposure , Pesticides , Down-Regulation , Farmers , Humans , MicroRNAs/genetics , Occupational Exposure/adverse effects , Pesticides/toxicity
12.
Cancers (Basel) ; 14(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35205667

ABSTRACT

Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results.

13.
Aging Dis ; 12(6): 1494-1515, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34527424

ABSTRACT

The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.

14.
Int J Oncol ; 59(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34396439

ABSTRACT

Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient­tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI­based immunotherapy. Moreover, the research of GM­derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI­based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient­tailored anticancer approaches with greater efficacy.


Subject(s)
Bacteria/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Bacteria/drug effects , Clinical Trials as Topic , Gastrointestinal Microbiome/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/microbiology , Treatment Outcome
15.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445183

ABSTRACT

Colorectal cancer (CRC) is characterized by genetic heterogeneity and is often diagnosed at an advanced stage. Therefore, there is a need to identify novel predictive markers. Yin Yang 1 (YY1) is a transcription factor playing a dual role in cancer. The present study aimed to investigate whether YY1 expression levels influence CRC cell response to therapy and to identify the transcriptional targets involved. The diagnostic and prognostic values of YY1 and the identified factor(s) in CRC patients were also explored. Silencing of YY1 increased the resistance to 5-Fluorouracil-induced cytotoxicity in two out of four CRC cells with different genotypes. BCL2L15/Bfk pro-apoptotic factor was found selectively expressed in the responder CRC cells and downregulated upon YY1 knockdown. CRC dataset analyses corroborated a tumor-suppressive role for both YY1 and BCL2L15 whose expressions were inversely correlated with aggressiveness. CRC single-cell sequencing dataset analyses demonstrated higher co-expression levels of both YY1 and BCL2L15 within defined tumor cell clusters. Finally, elevated levels of YY1 and BCL2L15 in CRC patients were associated with larger relapse-free survival. Given their observed anti-cancer role, we propose YY1 and BCL2L15 as candidate diagnostic and prognostic CRC biomarkers.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , YY1 Transcription Factor/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans
16.
Int J Oncol ; 58(2): 145-157, 2021 02.
Article in English | MEDLINE | ID: mdl-33491759

ABSTRACT

The severe acute respiratory syndrome associated coronavirus­2 (SARS­CoV­2) poses a threat to human life worldwide. Since early March, 2020, coronavirus disease 2019 (COVID­19), characterized by an acute and often severe form of pneumonia, has been declared a pandemic. This has led to a boom in biomedical research studies at all stages of the pipeline, from the in vitro to the clinical phase. In line with this global effort, known drugs, currently used for the treatment of other pathologies, including antivirals, immunomodulating compounds and antibodies, are currently used off­label for the treatment of COVID­19, in association with the supportive standard care. Yet, no effective treatments have been identified. A new hope stems from medical oncology and relies on the use of immune­checkpoint inhibitors (ICIs). In particular, amongst the ICIs, antibodies able to block the programmed death­1 (PD­1)/PD ligand-1 (PD­L1) pathway have revealed a hidden potential. In fact, patients with severe and critical COVID­19, even prior to the appearance of acute respiratory distress syndrome, exhibit lymphocytopenia and suffer from T­cell exhaustion, which may lead to viral sepsis and an increased mortality rate. It has been observed that cancer patients, who usually are immunocompromised, may restore their anti­tumoral immune response when treated with ICIs. Moreover, viral-infected mice and humans, exhibit a T­cell exhaustion, which is also observed following SARS­CoV­2 infection. Importantly, when treated with anti­PD­1 and anti­PD­L1 antibodies, they restore their T­cell competence and efficiently counteract the viral infection. Based on these observations, four clinical trials are currently open, to examine the efficacy of anti­PD­1 antibody administration to both cancer and non­cancer individuals affected by COVID­19. The results may prove the hypothesis that restoring exhausted T­cells may be a winning strategy to beat SARS­CoV­2 infection.


Subject(s)
Antineoplastic Agents/therapeutic use , COVID-19 Drug Treatment , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , SARS-CoV-2/drug effects , COVID-19/diagnosis , COVID-19/virology , Drug Repositioning , Humans
17.
Crit Rev Oncog ; 26(4): 55-66, 2021.
Article in English | MEDLINE | ID: mdl-35381147

ABSTRACT

The circadian clock is a conserved timekeeping mechanism that is involved in the regulation of daily oscillations of the various biological processes and behaviors of human beings. It is well established that aberrant clock gene expression is associated with increased risk of various diseases including cancer. Also, the clock genes contribute to carcinogenesis by altering the expression of tumor-associated proto-oncogenes and many other tumor suppressor genes. One example is the close association of the circadian clock with the proto-oncogene c-myc. c-myc is overexpressed in many cancers and is involved in the initiation of the oncogenic process. Herein, we report the various clock genes in the circadian clock and how each is involved in the regulation of c-myc expression. Targeting altered clock genes to inhibit the expression of c-myc may be a therapeutic approach for the prevention and treatment of various cancers.


Subject(s)
Circadian Clocks , Neoplasms , Carcinogenesis/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Genes, myc , Humans , Neoplasms/genetics
18.
Antioxid Redox Signal ; 34(5): 383-401, 2021 02 10.
Article in English | MEDLINE | ID: mdl-32027171

ABSTRACT

Significance: Hematological malignancies represent the fourth most diagnosed cancer. Relapse and acquired resistance to anticancer therapy constitute two actual issues that need to be overcome. Nitric oxide (NO) plays a pivotal role in regulating cancer progression. At present, many studies are attempting to uncover the potentials of modulating NO levels to improve the efficacy of currently available treatments against lymphoma, leukemia, and myeloma. Recent Advances: It is becoming progressively clear that NO modulation may help hematological cancer management, either by targeting directly tumor cells or by driving the immune system to eliminate cancer cells. Critical Issues: NO is a dual molecule that can have a tumor-protecting or stimulating effect, depending on its local concentration. Moreover, NO is able to target a wide range of molecules involved in both cancer genesis and evolution. In this review, an overview of the recent findings regarding the pivotal role played by NO and nitric oxide synthase in cancer progression and anticancer therapy is presented, with particular focus on hematological malignancies. Future Directions: It is critical to establish the cancer-specific function of NO and critically drive its modulation to improve cancer management toward a personalized approach. This has a special importance in hematological tumors, where the urgency of finding eradicative therapies is constant. Antioxid. Redox Signal. 34, 383-401.


Subject(s)
Hematologic Neoplasms/etiology , Hematologic Neoplasms/metabolism , Nitric Oxide/metabolism , Animals , Biomarkers , Disease Management , Disease Progression , Disease Susceptibility , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/therapy , Humans , Oxidation-Reduction
19.
Cancers (Basel) ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291603

ABSTRACT

Malignancies heterogeneity represents a critical issue in cancer care, as it often causes therapy resistance and tumor relapse. Organoids are three-dimensional (3D) miniaturized representations of selected tissues within a dish. Lately, organoid technology has been applied to oncology with growing success and Patients Derived Tumor Organoids (PDTOs) constitute a novel available tool which fastens cancer research. PDTOs are in vitro models of cancer, and importantly, they can be used as a platform to validate the efficacy of anti-cancer drugs. For that reason, they are currently utilized in clinics as emerging in vitro screening technology to tailor the therapy around the patient, with the final goal of beating cancer resistance and recurrence. In this sense, PDTOs biobanking is widely used and PDTO-libraries are helping the discovery of novel anticancer molecules. Moreover, they represent a good model to screen and validate compounds employed for other pathologies as off-label drugs potentially repurposed for the treatment of tumors. This will open up novel avenues of care thus ameliorating the life expectancy of cancer patients. This review discusses the present advancements in organoids research applied to oncology, with special attention to PDTOs and their translational potential, especially for anti-cancer drug testing, including off-label molecules.

20.
Biomolecules ; 10(9)2020 09 16.
Article in English | MEDLINE | ID: mdl-32948090

ABSTRACT

Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.


Subject(s)
Brain/metabolism , Extracellular Vesicles/metabolism , Nanoparticles/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Brain/pathology , Cell Communication/drug effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Models, Biological , Nanoparticles/therapeutic use , Neurodegenerative Diseases/drug therapy , Parkinson Disease/drug therapy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...