Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446341

ABSTRACT

RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.


Subject(s)
Bothrops , Crotalid Venoms , Animals , DNA, Complementary/genetics , Bothrops/genetics , Peru , Clinical Relevance , Crotalid Venoms/genetics , Proteins , RNA
2.
Pharmaceutics ; 15(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242775

ABSTRACT

From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.

3.
Toxicon ; 228: 107097, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37028563

ABSTRACT

Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.


Subject(s)
Platelet Aggregation , von Willebrand Factor , Humans , Animals , Mice , von Willebrand Factor/metabolism , Metalloproteases/metabolism , Blood Platelets , Collagen/metabolism
4.
Toxicon ; 223: 107022, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621682

ABSTRACT

Previous knowledge about the taxonomic distribution of venomous snake species is very useful for epidemiological aspects of ophidism. Here, we sought to develop an assay for the differential identification of clinically relevant snakes in Peru: Bothrops atrox, Lachesis muta, and Crotalus durissus using a multiplex loop-mediated isothermal amplification (mLAMP) assay. For this, DNA was extracted from the shed snake skins and the mitochondrial genes Cytb, COI, and 12S rRNA were amplified and further sequenced, for the design of mLAMP reaction primers. For each snake species the forward and reverse primers, internal forward and reverse primers, and the loop primers were obtained, bearing the latter different fluorophores for product identification. Finally, the reaction was standardized in the presence of all primer sets, and an optimal amount of low molecular weight polyethyleneimine. The precipitated products were observed in a UV light transilluminator, finding a differential fluorescence according to the DNA used, with a detection limit to the naked eye in the range of 0.2-25 ng of DNA, within 30 min. This study is the first report on the use of mLAMP technology for the identification of venomous snakes.


Subject(s)
Bothrops , Crotalinae , Animals , Peru , Nucleic Acid Amplification Techniques , DNA
5.
Toxicon, V. 228, 107097, mar. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4853

ABSTRACT

Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.

6.
Front Oncol ; 12: 938749, 2022.
Article in English | MEDLINE | ID: mdl-35924151

ABSTRACT

Beyond the role of mitochondria in apoptosis initiation/execution, some mitochondrial adaptations support the metastasis and chemoresistance of cancer cells. This highlights mitochondria as a promising target for new anticancer strategies. Emergent evidence suggests that some snake venom toxins, both proteins with enzymatic and non-enzymatic activities, act on the mitochondrial metabolism of cancer cells, exhibiting unique and novel mechanisms that are not yet fully understood. Currently, six toxin classes (L-amino acid oxidases, thrombin-like enzymes, secreted phospholipases A2, three-finger toxins, cysteine-rich secreted proteins, and snake C-type lectin) that alter the mitochondrial bioenergetics have been described. These toxins act through Complex IV activity inhibition, OXPHOS uncoupling, ROS-mediated permeabilization of inner mitochondrial membrane (IMM), IMM reorganization by cardiolipin interaction, and mitochondrial fragmentation with selective migrastatic and cytotoxic effects on cancer cells. Notably, selective internalization and direct action of snake venom toxins on tumor mitochondria can be mediated by cell surface proteins overexpressed in cancer cells (e.g. nucleolin and heparan sulfate proteoglycans) or facilitated by the elevated Δψm of cancer cells compared to that non-tumor cells. In this latter case, selective mitochondrial accumulation, in a Δψm-dependent manner, of compounds linked to cationic snake peptides may be explored as a new anti-cancer drug delivery system. This review analyzes the effect of snake venom toxins on mitochondrial bioenergetics of cancer cells, whose mechanisms of action may offer the opportunity to develop new anticancer drugs based on toxin scaffolds.

7.
Int J Biol Macromol ; 206: 990-1002, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35321814

ABSTRACT

Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a ß-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 µg) and edema-forming (DEM = 26.00 ± 1.15 µg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.


Subject(s)
Bothrops , Crotalid Venoms , Viperidae , Amino Acid Sequence , Animals , Bothrops/metabolism , Myotoxicity , Peru , Phospholipases A2/chemistry , Rabbits , Viperidae/metabolism
8.
Bol Med Hosp Infant Mex ; 79(1): 3-16, 2022.
Article in English | MEDLINE | ID: mdl-35086128

ABSTRACT

Amoebiasis is an intestinal parasitosis caused by the protozoan Entamoeba histolytica that represents the third leading cause of mortality due to parasitosis. It is a prevalent disease in tropical climate regions with poor or absent sanitary services. Microscopy and antigen detection techniques are routinely used to diagnose amoebiasis because of their low cost and ease of application. However, these techniques do not differentiate E. histolytica infections and other potentially pathogenic species such as Entamoeba moshkovskii or Entamoeba bangladeshi. Therefore, in the last decades, molecular tests that allow correct identification of the causal agent of amoebiasis and the establishment of the prevalence of the infecting species have been developed. Techniques based on nucleic acids, such as conventional, multiplex, or real-time polymerase chain reaction (PCR), are being seriously considered in clinical laboratories, because they detect the etiologic agent directly from the sample without the need for previous prolonged culture, thus reducing diagnostic time. Also, the nested PCR test and the sequencing of ribosomal markers have allowed the identification of new parasitic species in humans, such as E. moshkovskii and E. bangladeshi, and an improved characterization of the known infecting species. The application of multiplex platforms allows the simultaneous identification of infecting species, increasing the sensitivity and specificity of these techniques. Therefore, the molecular diagnosis of amoebiasis is projected as an innovative tool in the fight against this parasitosis.


La amebiasis es una parasitosis intestinal causada por el protozoario Entamoeba histolytica y representa la tercera causa de mortalidad por parasitosis. Es una enfermedad prevalente en regiones de clima tropical con deficientes o nulos servicios sanitarios. Las técnicas de microscopía y detección de antígenos se emplean sistemáticamente para el diagnóstico de la amebiasis por su bajo costo y fácil aplicación. Sin embargo, no permiten diferenciar entre infecciones por E. histolytica y otras especies de potencial patogenicidad como Entamoeba moshkovskii o Entamoeba bangladeshi. Ante ello, en las últimas décadas se han desarrollado pruebas moleculares que permiten una correcta identificación del agente causal de la amebiasis y el establecimiento de la prevalencia de la especie infectante. Las técnicas basadas en ácidos nucleicos, como la reacción en cadena de la polimerasa (PCR) convencional, múltiple o en tiempo real, están siendo seriamente consideradas en los laboratorios clínicos, porque detectan al agente etiológico de manera directa en la muestra sin necesidad de cultivo prolongado previo, disminuyendo de esta forma el tiempo del diagnóstico. Asimismo, la PCR anidada sumada a la secuenciación de marcadores ribosomales ha permitido la identificación de nuevas especies parasitarias, como E. moshkovskii y E. bangladeshi en humanos, y una mejor caracterización de las especies infectantes ya conocidas. La aplicación de las plataformas multiplex permite la identificación simultánea de especies infectantes, aumentando la sensibilidad y la especificidad de estas técnicas. Por esto, el diagnóstico molecular de la amebiasis se proyecta como una verdadera herramienta innovadora en la lucha contra las parasitosis.


Subject(s)
Amebiasis , Entamoeba histolytica , Entamoeba , Entamoebiasis , Entamoeba histolytica/genetics , Entamoebiasis/diagnosis , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Feces/parasitology , Humans
9.
IUCrJ ; 9(Pt 1): 86-97, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35059213

ABSTRACT

Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.

10.
Int J Biol Macromol ; 153: 779-795, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32169454

ABSTRACT

A thrombin-like enzyme, pictobin, was purified from Bothrops pictus snake venom. It is a 41-kDa monomeric glycoprotein as showed by mass spectrometry and contains approx. 45% carbohydrate by mass which could be removed with N-glycosidase. Pictobin coagulates plasma and fibrinogen, releasing fibrinopeptide A and induces the formation of a friable/porous fibrin network as visualized by SEM. The enzyme promoted platelet aggregation in human PRP and defibrination in mouse model and showed catalytic activity on chromogenic substrates S-2266, S-2366, S-2160 and S-2238. Pictobin interacts with the plasma inhibitor α2-macroglobulin, which blocks its interaction with fibrinogen but not with the small substrate BApNA. Heparin does not affect its enzymatic activity. Pictobin cross reacted with polyvalent bothropic antivenom, and its deglycosylated form reduced its catalytic action and antivenom reaction. In breast and lung cancer cells, pictobin inhibits the fibronectin-stimulated migration. Moreover, it produces strong NADH oxidation, mitochondrial depolarization, ATP decrease and fragmentation of mitochondrial network. These results suggest by first time that a snake venom serinprotease produces mitochondrial dysfunction by affecting mitochondrial dynamics and bioenergetics. Structural model of pictobin reveals a conserved chymotrypsin fold ß/ß hydrolase. These data indicate that pictobin has therapeutic potential in the treatment of cardiovascular disorders and metastatic disease.


Subject(s)
Blood Platelets/metabolism , Bothrops , Crotalid Venoms/chemistry , Endopeptidases/chemistry , Platelet Aggregation , Reptilian Proteins , Animals , Catalysis , Fibrinogen/chemistry , Humans , Mice , Pregnancy-Associated alpha 2-Macroglobulins/chemistry
11.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561469

ABSTRACT

Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2ß1 integrin. Neither the α2ß1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Crotalid Venoms/enzymology , Crotalinae , Metalloproteases/pharmacology , Platelet Membrane Glycoproteins/biosynthesis , Amino Acid Sequence , Animals , Crotalinae/metabolism , Extracellular Matrix , Metalloproteases/chemistry , Metalloproteases/genetics , Metalloproteases/isolation & purification , Models, Molecular , Phylogeny , Platelet Membrane Glycoproteins/antagonists & inhibitors , Platelet Membrane Glycoproteins/chemistry , Protein Conformation , Proteolysis , Structure-Activity Relationship
12.
Biochimie ; 162: 33-45, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30946947

ABSTRACT

Snake venoms are a rich source of enzymes such as metalloproteinases, serine proteinases phospholipases A2 and myotoxins, that have been well characterized structurally and functionally. However, hyaluronidases (E.C.3.2.1.35) have not been studied extensively. In this study, we describe the biochemical and molecular features of a hyaluronidase (Hyal-Ba) isolated from the venom of the Peruvian snake Bothrops atrox. Hyal-Ba was purified by a combination of ion-exchange and gel filtration chromatography. Purified Hyal-Ba is a 69-kDa (SDS-PAGE) monomeric glycoprotein with an N-terminal amino acid sequence sharing high identity with homologous snake venom hyaluronidases. Detected associated carbohydrates were hexoses (16.38%), hexosamines (2.7%) and sialic acid (0.69%). Hyal-Ba selectively hydrolyzed only hyaluronic acid (HA; specific activity = 437.5 U/mg) but it did not hydrolyze chondroitin sulfate or heparin. The optimal pH and temperature for maximum activity were 6.0 and 40 °C, respectively, and its Km was 0.31 µM. Its activity was inhibited by EDTA, iodoacetate, 2-mercaptoethanol, TLCK and dexamethasone. Na+ and K+ (0.2 M) positively affect hyaluronidase activity; while Mg2+, Br2+, Ba2+, Cu2+, Zn2+, and Cd2+ reduced catalytic activity. Hyal-Ba potentiates the hemorrhagic and hemolytic activity of whole venom, but decreased subplantar edema caused by an l-amino acid oxidase (LAAO). The Hyal-Ba cDNA sequence (2020 bp) encodes 449 amino acid residues, including the catalytic site residues (Glu135, Asp133, Tyr206, Tyr253 and Trp328) and three functional motifs for N-linked glycosylation, which are conserved with other snake hyaluronidases. Spatial modeling of Hyal-Ba displayed a TIM-Barrel (α/ß) fold and an EGF-like domain in the C-terminal portion. The phylogenetic analysis of Hyal-Ba with other homologous Hyals showed the monophyly of viperids. Further, Hyal-Ba studies may extend our knowledge of B. atrox toxinology and provides insight to improve the neutralizing strategies of therapeutic antivenoms.


Subject(s)
Bothrops/metabolism , Crotalid Venoms , Hyaluronoglucosaminidase , Animals , Base Sequence/genetics , Crotalid Venoms/enzymology , Crotalid Venoms/toxicity , DNA, Complementary , Hyaluronoglucosaminidase/chemistry , Hyaluronoglucosaminidase/classification , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/toxicity , Kinetics , Mice , Mice, Inbred BALB C , Models, Molecular , Peru , Phylogeny , Protein Stability , Protein Structure, Secondary , Substrate Specificity
13.
Sci Rep ; 9(1): 781, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692577

ABSTRACT

Snake venom L-amino acid oxidases (LAAOs) are flavoproteins, which perform diverse biological activities in the victim such as edema, myotoxicity and cytotoxicity, contributing to the development of clinical symptoms of envenomation. LAAO cytotoxicity has been described, but the temporal cascade of events leading to cell death has not been explored so far. This study evaluates the involvement of LAAO in dermonecrosis in mice and its cytotoxic effects in normal human keratinocytes, the major cell type in the epidermis, a tissue that undergoes extensive necrosis at the snakebite site. Pharmacological inhibition by the antioxidant NAC (N-acetyl cysteine) prevented B. atrox venom-induced necrosis. Consistent with the potential role of oxidative stress in wounding, treatment with purified LAAO decreased keratinocyte viability with an Effective Concentration (EC50) of 5.1 µg/mL. Cytotoxicity caused by LAAO was mediated by H2O2 and treated cells underwent autophagy, followed by apoptosis and necrosis. LAAO induced morphological alterations that precede cell death. Our results show the chronological events leading to cell death and the temporal resolution from autophagy, apoptosis and necrosis as distinct mechanisms triggered by LAAO. Fluorescently-labelled LAAO was efficiently and rapidly internalized by keratinocytes, suggesting that catalysis of intracellular substrates may contribute to LAAO toxicity. A better understanding of LAAO cytotoxicity and its mechanism of action will help to identify potential therapeutic strategies to ameliorate localized snake envenomation symptoms.


Subject(s)
Bothrops/metabolism , Keratinocytes/cytology , L-Amino Acid Oxidase/toxicity , Skin/pathology , Snake Venoms/enzymology , Acetylcysteine/pharmacology , Animals , Autophagy/drug effects , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Mice , Necrosis , Oxidative Stress/drug effects , Skin/drug effects
14.
Toxicon ; 139: 74-86, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29024770

ABSTRACT

An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca2+, Mg2+ and Mn2+ did not alter Bpic-LAAO activity; however, Zn2+ is an inhibitor. Some reagents such as ß-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 µg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus.


Subject(s)
Crotalid Venoms/enzymology , L-Amino Acid Oxidase/chemistry , L-Amino Acid Oxidase/isolation & purification , Amino Acid Sequence , Animals , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bothrops , Crotalid Venoms/toxicity , Female , Humans , L-Amino Acid Oxidase/antagonists & inhibitors , Male , Mice , Peru , Phylogeny , Platelet Aggregation/drug effects , Structure-Activity Relationship
15.
Biochimie ; 95(7): 1476-86, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23578498

ABSTRACT

The thrombin-like enzyme from Bothrops barnetti named barnettobin was purified. We report some biochemical features of barnettobin including the complete amino acid sequence that was deduced from the cDNA. Snake venom serine proteases affect several steps of human hemostasis ranging from the blood coagulation cascade to platelet function. Barnettobin is a monomeric glycoprotein of 52 kDa as shown by reducing SDS-PAGE, and contains approx. 52% carbohydrate by mass which could be removed by N-glycosidase. The complete amino acid sequence was deduced from the cDNA sequence. Its sequence contains a single chain of 233 amino acid including three N-glycosylation sites. The sequence exhibits significant homology with those of mammalian serine proteases e.g. thrombin and with homologous TLEs. Its specific coagulant activity was 251.7 NIH thrombin units/mg, releasing fibrinopeptide A from human fibrinogen and showed defibrinogenating effect in mouse. Both coagulant and amidolytic activities were inhibited by PMSF. N-deglycosylation impaired its temperature and pH stability. Its cDNA sequence with 750 bp encodes a protein of 233 residues. Indications that carbohydrate moieties may play a role in the interaction with substrates are presented. Barnettobin is a new defibrinogenating agent which may provide an opportunity for the development of new types of anti-thrombotic drugs.


Subject(s)
Bothrops/metabolism , Coagulants/chemistry , DNA, Complementary/chemistry , Thrombin/chemistry , Venoms/enzymology , Amino Acid Sequence , Animals , Base Sequence , Blood Coagulation , Coagulants/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Mice , Molecular Sequence Data , Sequence Analysis , Thrombin/metabolism , Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...