ABSTRACT
Anastomotic leakage (AL) is a major cause of morbidity and mortality after colorectal surgery, but the mechanism behind this complication is still not fully understood. Despite the advances in surgical techniques and perioperative care, the complication rates have remained steady. Recently, it has been suggested that colon microbiota may be involved in the development of complications after colorectal surgery. The aim of this study was to evaluate the association of gut microbiota in the development of colorectal AL and their possible virulence strategies to better understand the phenomenon. Using 16S rRNA sequencing of samples collected on the day of surgery and the sixth day following surgery, we analyzed the changes in tissue-associated microbiota at anastomotic sites created in a model of rats with ischemic colon resection. We discovered a trend for lower microbial diversity in the AL group compared to non-leak anastomosis (NLA). There were no differences in relative abundance in the different types of microbial respiration between these groups and the high abundance of the facultative anaerobic Gemella palaticanis is a marker species that stands out as a distinctive feature.
ABSTRACT
Aerial and respiratory tract-associated bacterial diversity has been scarcely studied in broiler production systems. This study examined the relationship between the environmental air and birds' respiratory microbiome, considering a longitudinal sampling. Total viable bacteria and coliforms in the air were quantified, and the 16S rRNA gene was sequenced from tracheal and air samples obtained through a novelty protocol. Air results showed a decrease in coliforms over time. However, at week 3, we reported an increase in coliforms (from 143 to 474 CFUc/m3) associated with litter management. Additionally, 16S rRNA gene results indicated a distinctive air microbial community, associated primarily with Bacillota phylum particularly of the Bacilli class (>58%), under all conditions. Tracheal results indicated a predominance of Escherichia coli/Shigella at the beginning of the productive cycle, shifting toward the middle and end of the cycle to Gallibacterium. However, at week 3, the dominance of Escherichia coli/Shigella (>99.5%) associated with litter aeration by tumbling stood out. Tracheal and air samples displayed a statistically different community structure, but shared differentially abundant features through time: Enterococcus, Gallibacterium, and Romboutsia ilealis. These results indicate the impact of production management protocols on the birds' respiratory system that should be considered a breakpoint in poultry farm health.
ABSTRACT
In the Porcelana Hot Spring (Northern Patagonia), true-branching cyanobacteria are the dominant primary producers in microbial mats, and they are mainly responsible for carbon and nitrogen fixation. However, little is known about their metabolic and genomic adaptations at high temperatures. Therefore, in this study, a total of 81 Fischerella thermalis strains (also known as Mastigocladus laminosus) were isolated from mat samples in a thermal gradient between 61-46°C. The complementary use of proteomic comparisons from these strains, and comparative genomics of F. thermalis pangenomes, suggested that at least two different ecotypes were present within these populations. MALDI-TOF MS analysis separated the strains into three clusters; two with strains obtained from mats within the upper temperature range (61 and 54°C), and a third obtained from mats within the lower temperature range (51 and 46°C). Both groups possessed different but synonymous nifH alleles. The main proteomic differences were associated with the abundance of photosynthesis-related proteins. Three F. thermalis metagenome assembled genomes (MAGs) were described from 66, 58 and 48°C metagenomes. These pangenomes indicated a divergence of orthologous genes and a high abundance of exclusive genes at 66°C. These results improved the current understanding of thermal adaptation of F. thermalis and the evolution of these thermophilic cyanobacterial species.
Subject(s)
Cyanobacteria/genetics , Ecotype , Hot Springs/microbiology , Hot Temperature , Chile , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Evolution, Molecular , Metagenome , Phylogeny , Proteome/genetics , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15T=CECT 9105T=IBRC-M 11031T).