Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38894109

ABSTRACT

The adoption of the Internet of Things (IoT) in the mining industry can dramatically enhance the safety of workers while simultaneously decreasing monitoring costs. By implementing an IoT solution consisting of a number of interconnected smart devices and sensors, mining industries can improve response times during emergencies and also reduce the number of accidents, resulting in an overall improvement of the social image of mines. Thus, in this paper, a robust end-to-end IoT system for supporting workers in harsh environments such as in mining industries is presented. The full IoT solution includes both edge devices worn by the workers in the field and a remote cloud IoT platform, which is responsible for storing and efficiently sharing the gathered data in accordance with regulations, ethics, and GDPR rules. Extended experiments conducted to validate the IoT components both in the laboratory and in the field proved the effectiveness of the proposed solution in monitoring the real-time status of workers in mines.

2.
Comput Math Methods Med ; 2015: 868493, 2015.
Article in English | MEDLINE | ID: mdl-26120357

ABSTRACT

A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern.


Subject(s)
Fingers/blood supply , Image Processing, Computer-Assisted/methods , Microscopy/methods , Veins/pathology , Algorithms , Artificial Intelligence , Databases, Factual , Entropy , Humans , Image Interpretation, Computer-Assisted/methods , Infrared Rays , Models, Theoretical , Pattern Recognition, Automated/methods , Software
3.
Comput Med Imaging Graph ; 34(3): 213-27, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19892522

ABSTRACT

In this paper an algorithm for vessel segmentation and network extraction in retinal images is proposed. A new multi-scale line-tracking procedure is starting from a small group of pixels, derived from a brightness selection rule, and terminates when a cross-sectional profile condition becomes invalid. The multi-scale image map is derived after combining the individual image maps along scales, containing the pixels confidence to belong in a vessel. The initial vessel network is derived after map quantization of the multi-scale confidence matrix. Median filtering is applied in the initial vessel network, restoring disconnected vessel lines and eliminating noisy lines. Finally, post-processing removes erroneous areas using directional attributes of vessels and morphological reconstruction. The experimental evaluation in the publicly available DRIVE database shows accurate extraction of vessels network. The average accuracy of 0.929 with 0.747 sensitivity and 0.955 specificity is very close to the manual segmentation rates obtained by the second observer. The proposed algorithm is compared also with widely used supervised and unsupervised methods and evaluated in noisy conditions, giving higher average sensitivity rate in the same range of specificity and accuracy, and showing robustness in the presence of additive Salt&Pepper or Gaussian white noise.


Subject(s)
Radiographic Image Enhancement/methods , Retinal Vessels/diagnostic imaging , Algorithms , Anatomy, Cross-Sectional , Humans
SELECTION OF CITATIONS
SEARCH DETAIL