Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 54: 189-199, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30017561

ABSTRACT

The new developments of the FLUKA Positron-Emission-Tomography (PET) tools are detailed. FLUKA is a fully integrated Monte Carlo (MC) particle transport code, used for an extended range of applications, including Medical Physics. Recently, it provided the medical community with dedicated simulation tools for clinical applications, including the PET simulation package. PET is a well-established imaging technique in nuclear medicine, and a promising method for clinical in vivo treatment verification in hadrontherapy. The application of clinically established PET scanners to new irradiation environments such as hadrontherapy requires further experimental and theoretical research to which MC simulations could be applied. The FLUKA PET tools, besides featuring PET scanner models in its library, allow the configuration of new PET prototypes via the FLUKA Graphical User Interface (GUI) Flair. Both the beam time structure and scan time can be specified by the user, reproducing PET acquisitions in time, in a particle therapy scenario. Furthermore, different scoring routines allow the analysis of single and coincident events, and identification of parent isotopes generating annihilation events. Two reconstruction codes are currently supported: the Filtered Back-Projection (FBP) and Maximum-Likelihood Expectation Maximization (MLEM), the latter embedded in the tools. Compatibility with other reconstruction frameworks is also possible. The FLUKA PET tools package has been successfully tested for different detectors and scenarios, including conventional functional PET applications and in beam PET, either using radioactive sources, or simulating hadron beam irradiations. The results obtained so far confirm the FLUKA PET tools suitability to perform PET simulations in R&D environment.


Subject(s)
Monte Carlo Method , Positron-Emission Tomography/methods , Image Processing, Computer-Assisted , Signal-To-Noise Ratio
2.
Radiat Prot Dosimetry ; 161(1-4): 347-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24591727

ABSTRACT

The ISOLDE facility at CERN is one of the first facilities in the world dedicated to the production of the radioactive ion beams (RIB) and during all its working time underwent several upgrades. The goal of the latest proposed upgrade, 'The High Intensity and Energy ISOLDE' (HIE-ISOLDE), is to provide a higher performance facility in order to approximate it to the level of the next generation ISOL facilities, like EURISOL. The HIE-ISOLDE aims to improve significantly the quality of the produced RIB and for this reason the increasing of the primary beam power is one of the main objectives of the project. An increase in the nominal beam current (from 2 to 6 µA proton beam intensity) and energy (from 1.4 GeV to 2 GeV) of the primary proton beam will be possible due to the upgrade of CERN's accelerator infrastructure. The current upgrade means reassessment of the radiation protection and the radiation safety of the facility. However, an evaluation of the existing shielding configuration and access restrictions to the experimental and supply areas must be carried out. Monte Carlo calculations were performed in order to evaluate the radiation protection of the facility as well as radiation shielding assessment and design. The FLUKA-Monte Carlo code was used in this study to calculate the ambient dose rate distribution and particle fluxes in the most important areas, such as the experimental hall of the facility. The results indicate a significant increase in the ambient dose equivalent rate in some areas of the experimental hall when an upgrade configuration of the primary proton beam is considered. Special attention is required for the shielding of the target area once it is the main and very intensive radiation source, especially under the upgrade conditions. In this study, the access points to the beam extraction and beam maintenance areas, such as the mass separator rooms and the high voltage room, are identified as the most sensitive for the experimental hall from the radiation protection point of view.


Subject(s)
Protective Devices , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Computer Simulation , Equipment Design , Facility Design and Construction , Humans , Monte Carlo Method , Neutrons , Particle Accelerators , Radiation Dosage , Radiation Monitoring/methods , Radiation Protection/methods , Risk Assessment/methods , Risk Factors , Switzerland
3.
Radiat Prot Dosimetry ; 155(3): 351-63, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23516267

ABSTRACT

The high intensity and energy ISOLDE (HIE-ISOLDE) project is an upgrade to the existing ISOLDE facility at CERN. The foreseen increase in the nominal intensity and the energy of the primary proton beam of the existing ISOLDE facility aims at increasing the intensity of the produced radioactive ion beams (RIBs). The currently existing ISOLDE facility uses the proton beam from the proton-synchrotron booster with an energy of 1.4 GeV and an intensity up to 2 µA. After upgrade (final stage), the HIE-ISOLDE facility is supposed to run at an energy up to 2 GeV and an intensity up to 4 µA. The foreseen upgrade imposes constrains, from the radiation protection and the radiation safety point of view, to the existing experimental and supply areas. Taking into account the upgraded energy and intensity of the primary proton beam, a new assessment of the radiation protection and radiation safety of the HIE-ISOLDE facility is necessary. Special attention must be devoted to the shielding assessment of the beam dumps and of the experimental areas. In this work the state-of-the-art Monte Carlo particle transport simulation program FLUKA was used to perform the computation of the ambient dose equivalent rate distribution and of the particle fluxes in the projected HIE-ISOLDE facility (taking into account the upgrade nominal primary proton beam energy and intensity) and the shielding assessment of the facility, with the aim of identifying in the existing facility (ISOLDE) the critical areas and locations where new or reinforced shielding may be necessary. The consequences of the upgraded proton beam parameters on the operational radiation protection of the facility were studied.


Subject(s)
Facility Design and Construction , Particle Accelerators/instrumentation , Radiation Monitoring , Radiation Protection , Humans , Monte Carlo Method , Neutrons , Protons , Radiation Dosage
4.
Radiat Prot Dosimetry ; 116(1-4 Pt 2): 521-4, 2005.
Article in English | MEDLINE | ID: mdl-16604691

ABSTRACT

Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements-vacuum chambers, cryogenic cavities, wideband pickups and cryomodule beam tubes-have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions.


Subject(s)
Electronics , Equipment Failure , Gases/radiation effects , Particle Accelerators/instrumentation , Radiometry/methods , Signal Processing, Computer-Assisted/instrumentation , Telemetry/instrumentation , Computer Simulation , Equipment Failure Analysis/methods , Linear Energy Transfer , Models, Statistical , Monte Carlo Method , Protons , Radiation Dosage , Radiation Protection/instrumentation , Radiation Protection/methods , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL