Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2218330120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893259

ABSTRACT

Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.


Subject(s)
Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Animals , Humans , Mice , Acetylation , B-Lymphocytes/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Germinal Center , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Protein Processing, Post-Translational
3.
Nature ; 607(7920): 808-815, 2022 07.
Article in English | MEDLINE | ID: mdl-35794478

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse , Mutation , Oncogenes , Down-Regulation , Enhancer Elements, Genetic/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Oncogenes/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Receptors, CXCR4/genetics , Receptors, Glucocorticoid/metabolism , Repressor Proteins/metabolism
4.
Immunity ; 51(3): 535-547.e9, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31519498

ABSTRACT

Inactivating mutations of the CREBBP and EP300 acetyltransferases are among the most common genetic alterations in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). Here, we examined the relationship between these two enzymes in germinal center (GC) B cells, the normal counterpart of FL and DLBCL, and in lymphomagenesis by using conditional GC-directed deletion mouse models targeting Crebbp or Ep300. We found that CREBBP and EP300 modulate common as well as distinct transcriptional programs implicated in separate anatomic and functional GC compartments. Consistently, deletion of Ep300 but not Crebbp impaired the fitness of GC B cells in vivo. Combined loss of Crebbp and Ep300 completely abrogated GC formation, suggesting that these proteins partially compensate for each other through common transcriptional targets. This synthetic lethal interaction was retained in CREBBP-mutant DLBCL cells and could be pharmacologically targeted with selective small molecule inhibitors of CREBBP and EP300 function. These data provide proof-of-principle for the clinical development of EP300-specific inhibitors in FL and DLBCL.


Subject(s)
B-Lymphocytes/physiology , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Epigenesis, Genetic/genetics , Germinal Center/physiology , Lymphoma, Follicular/etiology , Lymphoma, Large B-Cell, Diffuse/genetics , Acetyltransferases/genetics , Animals , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Sequence Deletion/genetics , Transcription, Genetic/genetics
5.
Blood ; 131(22): 2454-2465, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29650799

ABSTRACT

Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, STAT6 (32% of cases), GNA13 (24%), XPO1 (18%), and ITPKB (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of STAT6 genetically and functionally cooperated with disruption of SOCS1, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including STAT3, STAT5B, JAK1, JAK2, and PTPN1), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.


Subject(s)
Gene Expression Regulation, Neoplastic , Hodgkin Disease/genetics , Janus Kinases/genetics , Mutation , STAT Transcription Factors/genetics , Cell Line, Tumor , DNA Mutational Analysis , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Humans , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
6.
Cancer Discov ; 7(3): 322-337, 2017 03.
Article in English | MEDLINE | ID: mdl-28069569

ABSTRACT

Inactivating mutations of the CREBBP acetyltransferase are highly frequent in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), the two most common germinal center (GC)-derived cancers. However, the role of CREBBP inactivation in lymphomagenesis remains unclear. Here, we show that CREBBP regulates enhancer/super-enhancer networks with central roles in GC/post-GC cell fate decisions, including genes involved in signal transduction by the B-cell receptor and CD40 receptor, transcriptional control of GC and plasma cell development, and antigen presentation. Consistently, Crebbp-deficient B cells exhibit enhanced response to mitogenic stimuli and perturbed plasma cell differentiation. Although GC-specific loss of Crebbp was insufficient to initiate malignant transformation, compound Crebbp-haploinsufficient/BCL2-transgenic mice, mimicking the genetics of FL and DLBCL, develop clonal lymphomas recapitulating the features of the human diseases. These findings establish CREBBP as a haploinsufficient tumor-suppressor gene in GC B cells and provide insights into the mechanisms by which its loss contributes to lymphomagenesis.Significance: Loss-of-function mutations of CREBBP are common and early lesions in FL and DLBCL, suggesting a prominent role in lymphoma initiation. Our studies identify the cellular program by which reduced CREBBP dosage facilitates malignant transformation, and have direct implications for targeted lymphoma therapy based on drugs affecting CREBBP-mediated chromatin acetylation. Cancer Discov; 7(3); 322-37. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.


Subject(s)
B-Lymphocytes/pathology , CREB-Binding Protein/genetics , Genes, Tumor Suppressor , Lymphoma, Large B-Cell, Diffuse/genetics , Animals , B-Lymphocytes/metabolism , CREB-Binding Protein/metabolism , Cell Differentiation/genetics , Chromatin/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Germinal Center/pathology , Haploinsufficiency , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Plasma Cells/drug effects , Plasma Cells/pathology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
7.
Nat Med ; 21(10): 1190-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26366712

ABSTRACT

Mutations in the gene encoding the KMT2D (or MLL2) methyltransferase are highly recurrent and occur early during tumorigenesis in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the functional consequences of these mutations and their role in lymphomagenesis are unknown. Here we show that FL- and DLBCL-associated KMT2D mutations impair KMT2D enzymatic activity, leading to diminished global H3K4 methylation in germinal-center (GC) B cells and DLBCL cells. Conditional deletion of Kmt2d early during B cell development, but not after initiation of the GC reaction, results in an increase in GC B cells and enhances B cell proliferation in mice. Moreover, genetic ablation of Kmt2d in mice overexpressing Bcl2 increases the incidence of GC-derived lymphomas resembling human tumors. These findings suggest that KMT2D acts as a tumor suppressor gene whose early loss facilitates lymphomagenesis by remodeling the epigenetic landscape of the cancer precursor cells. Eradication of KMT2D-deficient cells may thus represent a rational therapeutic approach for targeting early tumorigenic events.


Subject(s)
DNA-Binding Proteins/genetics , Germinal Center/cytology , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Proteins/genetics , Animals , B-Lymphocytes/pathology , Cell Proliferation , DNA Methylation , Epigenesis, Genetic , Gene Silencing , Humans , Lymphoma, Large B-Cell, Diffuse/etiology , Mice , Mutation, Missense , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...