Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 36(10): 2732-2742, 2021 09 18.
Article in English | MEDLINE | ID: mdl-34411244

ABSTRACT

STUDY QUESTION: How is the localisation of ovarian follicles affected by ageing and chronic diseases? SUMMARY ANSWER: Ovarian follicles shift deeper towards the medulla, due to thickening of the tunica albuginea (TA), with ageing and some major common chronic diseases. WHAT IS KNOWN ALREADY: The ovary undergoes morphological and functional changes with ageing. The follicular pool follows these changes with alterations in the amount and distribution of residual follicles. Diseases causing a chronic inflammatory process are associated with morphological changes and impaired ovarian function. STUDY DESIGN, SIZE, DURATION: We conducted a cross-sectional study, examining 90 ovaries from 90 female monkeys. The samples were collected from April 2018 to March 2019 at Tsukuba Primate Research Center in National Institutes of Biomedical Innovation, Health and Nutrition, Japan. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian samples were obtained from cynomolgus monkeys that died from natural causes or were euthanised. Ovarian sections were stained with haematoxylin and eosin (H&E) for histological analyses. In ovarian sections from 64 female macaques aged 0-25 years, a total of 13 743 follicles at different developmental stages (primordial, intermediary, primary, early secondary and late secondary) were assessed to determine the depth of each follicle from the outer surface of the ovarian cortex to the far end of the follicle, by using a digital imaging software. TA thickness was measured as sum of basal membrane and tunica collagen layer for each ovary under H&E staining. To explore the possibility of age-related trends in ovarian morphometric characteristics, samples were divided into four different age groups (0-3 years (pre-menarche), 4-9 years, 10-14 years and 15-20 years). To evaluate the effect of common chronic diseases on ovarian morphometric characteristics, macaques with diabetes mellitus (DM) (n = 10), endometriosis (n = 8) or inflammatory bowel disease (IBD) (n = 8) were compared to age-matched controls without chronic diseases. MAIN RESULTS AND THE ROLE OF CHANCE: Ovarian morphometric analysis revealed that the relative location of follicles became deeper in all age groups according to development of follicles (P < 0.05). Total follicle distance from the ovarian surface was increased with ageing (P < 0.05). In a sub-analysis according to developmental stage, only primordial and intermediary follicles were localised deeper with increasing age (P < 0.05). TA thickness was also increased with ageing (P < 0.05). The localisation of the total number of follicles became deeper in ovaries from monkeys with DM, endometriosis or IBD as compared to the control group (P < 0.05). With DM, analysis of follicles distance at almost each developmental stage was significantly deeper compared to controls (P < 0.05) with the exception of early secondary follicles. With endometriosis, follicles at primary and early and late secondary stages were significantly deeper compared to controls (P < 0.05). Also with IBD, follicles at primary and early and late secondary follicles were significantly deeper compared to controls (P < 0.001). The TA was thicker with DM and endometriosis compared to controls (P < 0.05), but not with IBD (P = 0.16). LARGE SCALE DATA: NA. LIMITATIONS, REASONS FOR CAUTION: Two-dimensional histology was used to assess follicle localisation. The possibility of minimal variations between the measured distance to the actual distance in a spherical structure cannot be excluded. Additionally, the severity of disease was not assessed. WIDER IMPLICATIONS OF THE FINDINGS: This study is the first step towards enhancing our understanding of how ageing and chronic diseases affect the relative localisation of dormant and developing follicles. These observations, combined with possible future human studies, may have managerial implications in the field of fertility preservation and other conditions involving ovarian tissue cryopreservation. STUDY FUNDING/COMPETING INTEREST(S): The present work was supported by the Grant-in-Aid for Scientific Research B (19H03801) (to K.K.), Challenging Exploratory Research (18K19624), Japan Agency for Medical Research and Development, Mochida Memorial Foundation for Medical and Pharmaceutical Research, Takeda Science Foundation and Naito Foundation (to K.K.). All authors have no conflicts of interest directly relevant to the content of this article.


Subject(s)
Fertility Preservation , Ovarian Follicle , Animals , Chronic Disease , Cross-Sectional Studies , Female , Macaca fascicularis
2.
Mol Hum Reprod ; 15(10): 625-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19692421

ABSTRACT

Endometriosis is a common gynecologic disorder characterized by pain and infertility. In addition to estrogen dependence, progesterone resistance is an emerging feature of this disorder. Specifically, a delayed transition from the proliferative to secretory phase as evidenced by dysregulation of progesterone target genes and maintenance of a proliferative molecular fingerprint in the early secretory endometrium (ESE) has been reported. MicroRNAs (miRNAs) are small noncoding RNAs that collectively represent a novel class of regulators of gene expression. In an effort to investigate further the observed progesterone resistance in the ESE of women with endometriosis, we conducted array-based, global miRNA profiling. We report distinct miRNA expression profiles in the ESE of women with versus without endometriosis in a subset of samples previously used in global gene expression analysis. Specifically, the miR-9 and miR-34 miRNA families evidenced dysregulation. Integration of the miRNA and gene expression profiles provides unique insights into the molecular basis of this enigmatic disorder and, possibly, the regulation of the proliferative phenotype during the early secretory phase of the menstrual cycle in affected women.


Subject(s)
Endometriosis/genetics , Endometrium/metabolism , MicroRNAs/genetics , Adult , Female , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
3.
Biol Reprod ; 80(1): 105-14, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18815356

ABSTRACT

Identification of mechanisms underlying endometriosis pathogenesis will facilitate understanding and treatment of infertility and pain associated with this disorder. Herein, we investigated the expression of steroidogenic pathway enzymes and key decidualization biomarkers in endometrial tissue and in eutopic endometrial stromal fibroblasts (hESFs) from women with vs. those without endometriosis, and subsequently treated in vitro with 8-bromo-cAMP (8-Br-cAMP) or progesterone (P4). Real-time quantitative PCR, immunohistochemistry, ELISA, and radiometric aromatase activity assay were used. The results demonstrate significantly increased (14.5-fold; P=0.037) expression of aromatase in eutopic endometrium of women with disease. In 8-Br-cAMP-treated hESF from eutopic endometrium of women with endometriosis, the balance in estradiol (E2) and P4 biosynthetic and metabolizing enzymes is disturbed (decreased HSD3B1 and HSD17B2, and increased HSD17B1 and aromatase), with the equilibrium being shifted towards an E2-enriched milieu. However, hESF from the same group of women treated with P4 did not demonstrate such responsiveness. Lower expression of IGFBP1 and prolactin mRNA and protein was observed in hESF from women with vs. those without endometriosis in response to 8-Br-cAMP, but not P4, suggesting a blunted response of these decidual biomarkers to activation of the PKA pathway in eutopic endometrium in women with disease. The dichotomy of 8-Br-cAMP regulation of select steroidogenic enzymes leading to an enriched E2 milieu within the endometrium and a blunted response of decidual biomarkers to this decidualizing agent of hESF from women with endometriosis suggests resistance to full decidualization of the stromal fibroblasts and mechanisms underlying implantation failure and the pathophysiology of this disorder.


Subject(s)
Aromatase/metabolism , Endometriosis/metabolism , Endometrium/metabolism , Estradiol Dehydrogenases/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Adult , Aromatase/biosynthesis , Aromatase/genetics , Decidua/enzymology , Decidua/metabolism , Endometriosis/enzymology , Endometriosis/pathology , Endometrium/cytology , Endometrium/drug effects , Endometrium/enzymology , Enzyme-Linked Immunosorbent Assay , Estradiol/biosynthesis , Estradiol Dehydrogenases/biosynthesis , Estradiol Dehydrogenases/genetics , Female , Humans , Immunohistochemistry , Insulin-Like Growth Factor Binding Protein 1/metabolism , Middle Aged , Progesterone/biosynthesis , Progesterone/pharmacology , Prolactin/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/drug effects , Stromal Cells/enzymology , Stromal Cells/metabolism , Stromal Cells/pathology , Young Adult
4.
Endocrinology ; 147(3): 1097-121, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16306079

ABSTRACT

Histological evaluation of endometrium has been the gold standard for clinical diagnosis and management of women with endometrial disorders. However, several recent studies have questioned the accuracy and utility of such evaluation, mainly because of significant intra- and interobserver variations in histological interpretation. To examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole-genome molecular phenotyping (54,600 genes and expressed sequence tags) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. Unsupervised principal component analysis of all samples revealed that samples self-cluster into four groups consistent with histological phenotypes of proliferative (PE), early-secretory (ESE), mid-secretory (MSE), and late-secretory (LSE) endometrium. Independent hierarchical clustering analysis revealed equivalent results, with two major dendrogram branches corresponding to PE/ESE and MSE/LSE and sub-branching into the four respective phases with heterogeneity among samples within each sub-branch. K-means clustering of genes revealed four major patterns of gene expression (high in PE, high in ESE, high in MSE, and high in LSE), and gene ontology analysis of these clusters demonstrated cycle-phase-specific biological processes and molecular functions. Six samples with ambiguous histology were identically assignable to a cycle phase by both principal component analysis and hierarchical clustering. Additionally, pairwise comparisons of relative gene expression across the cycle revealed genes/families that clearly distinguish the transitions of PE-->ESE, ESE-->MSE, and MSE-->LSE, including receptomes and signaling pathways. Select genes were validated by quantitative RT-PCR. Overall, the results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.


Subject(s)
Endometrium/metabolism , Gene Expression Regulation , Menstrual Cycle/physiology , Models, Biological , Ovulation , Uterine Diseases/genetics , Adult , Algorithms , Biopsy , Cluster Analysis , Down-Regulation , Endometrial Neoplasms/metabolism , Endometrium/physiology , Female , Gene Expression Profiling , Genome , Humans , Middle Aged , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Steroids/metabolism , Up-Regulation , Uterine Diseases/pathology , Uterus/metabolism , Uterus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...