Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3770, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773267

ABSTRACT

Noble gas isotopes in plumes require a source of primitive volatiles largely isolated in the Earth for 4.5 Gyrs. Among the proposed reservoirs, the core is gaining interest in the absence of robust geochemical and geophysical evidence for a mantle source. This is supported by partitioning data showing that sufficient He and Ne could have been incorporated into the core to source plumes today. Here we perform ab initio calculations on the partitioning of He, Ne, Ar, Kr and Xe between liquid iron and silicate melt under core forming conditions. For He our results are consistent with previous studies allowing for substantial amounts of He in the core. In contrast, the partition coefficient for Ne is three orders of magnitude lower than He. This very low partition coefficient would result in a 3He/22Ne ratio of ~103 in the core, far higher than observed in ocean island basalts (OIBs). We conclude that the core is not the source of noble gases in OIBs.

2.
J Chem Phys ; 155(19): 194505, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800959

ABSTRACT

Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.

3.
Proc Natl Acad Sci U S A ; 116(52): 26389-26393, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31826951

ABSTRACT

The lowermost portion of Earth's mantle (D″) above the core-mantle boundary shows anomalous seismic features, such as strong seismic anisotropy, related to the properties of the main mineral MgSiO3 postperovskite. But, after over a decade of investigations, the seismic observations still cannot be explained simply by flow models which assume dislocation creep in postperovskite. We have investigated the chemical diffusivity of perovskite and postperovskite phases by experiment and ab initio simulation, and derive equations for the observed anisotropic diffusion creep. There is excellent agreement between experiments and simulations for both phases in all of the chemical systems studied. Single-crystal diffusivity in postperovskite displays at least 3 orders of magnitude of anisotropy by experiment and simulation (Da = 1,000 Db; Db ≈ Dc) in zinc fluoride, and an even more extreme anisotropy is predicted (Da = 10,000 Dc; Dc = 10,000 Db) in the natural MgSiO3 system. Anisotropic chemical diffusivity results in anisotropic diffusion creep, texture generation, and a strain-weakening rheology. The results for MgSiO3 postperovskite strongly imply that regions within the D″ region of Earth dominated by postperovskite will 1) be substantially weaker than regions dominated by perovskite and 2) develop a strain-induced crystallographic-preferred orientation with strain-weakening rheology. This leads to strain localization and the possibility to bring regions with significantly varying textures into close proximity by strain on narrow shear zones. Anisotropic diffusion creep therefore provides an attractive alternative explanation for the complexity in observed seismic anisotropy and the rapid lateral changes in seismic velocities in D″.

4.
J Appl Crystallogr ; 51(Pt 2): 470-480, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29657568

ABSTRACT

On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T/Tm > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = (V0K0)/γ = 4.04 (1) × 10-18 J, V0 = 67.1671 (3) Å3, b = (K0' - 1)/2 = 3.84 (9), θD = 182 (2) K, (vf/Ω)exp(sf/kB) = 1.8 (23) and hf = 0.9 (2) eV, where V0 is the unit-cell volume at 0 K, K0 and K0' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θD is the Debye temperature, vf, hf and sf are the vacancy formation volume, enthalpy and entropy, respectively, Ω is the average volume per atom, and kB is Boltzmann's constant.

5.
Phys Chem Miner ; 45(4): 311-322, 2018.
Article in English | MEDLINE | ID: mdl-31258241

ABSTRACT

ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth's deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the "post-perovskite" structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite â†’ La2S3 structure â†’ Sb2S3 structure â†’ P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite â†’ CaIrO3 structure â†’ Sb2S3 structure â†’ P63/mmc structure. However, only the perovskite and CaIrO3 structures are stable with respect to dissociation into NaF and MgF2.

6.
J Appl Crystallogr ; 48(Pt 6): 1914-1920, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26664346

ABSTRACT

The equation of state of the orthorhombic phase of NiSi with Pmmn symmetry has been determined at room temperature from synchrotron-based X-ray diffraction measurements of its lattice parameters, made in a diamond anvil cell. Measurements were performed up to 44 GPa, using Ne as the pressure medium and Au as the pressure standard. The resulting pressure-volume (P-V) data have been fitted with a Birch-Murnaghan equation of state of third order to yield V0 = 11.650 (7) Å3 atom-1, K0 = 162 (3) GPa and K0' = 4.6 (2). In addition, P-V data have been collected on Ni53Si47 in the B20 structure using both Ne and He as the pressure media and Cu and Au as the pressure standards, also to 44 GPa. A fit using the same Birch-Murnaghan equation of state of third order yields V0 = 11.364 (6) Å3 atom-1, K0 = 171 (4) GPa and K0' = 5.5 (3).

7.
Science ; 342(6157): 466-8, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24114785

ABSTRACT

The observed shear-wave velocity VS in Earth's core is much lower than expected from mineralogical models derived from both calculations and experiments. A number of explanations have been proposed, but none sufficiently explain the seismological observations. Using ab initio molecular dynamics simulations, we obtained the elastic properties of hexagonal close-packed iron (hcp-Fe) at 360 gigapascals up to its melting temperature Tm. We found that Fe shows a strong nonlinear shear weakening just before melting (when T/Tm > 0.96), with a corresponding reduction in VS. Because temperatures range from T/Tm = 1 at the inner-outer core boundary to T/Tm ≈ 0.99 at the center, this strong nonlinear effect on VS should occur in the inner core, providing a compelling explanation for the low VS observed.

8.
Nature ; 495(7440): 177-8, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23486054
9.
Nature ; 424(6948): 536-9, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12891353

ABSTRACT

The nature of the stable phase of iron in the Earth's solid inner core is still highly controversial. Laboratory experiments suggest the possibility of an uncharacterized phase transformation in iron at core conditions and seismological observations have indicated the possible presence of complex, inner-core layering. Theoretical studies currently suggest that the hexagonal close packed (h.c.p.) phase of iron is stable at core pressures and that the body centred cubic (b.c.c.) phase of iron becomes elastically unstable at high pressure. In other h.c.p. metals, however, a high-pressure b.c.c. form has been found to become stabilized at high temperature. We report here a quantum mechanical study of b.c.c.-iron able to model its behaviour at core temperatures as well as pressures, using ab initio molecular dynamics free-energy calculations. We find that b.c.c.-iron indeed becomes entropically stabilized at core temperatures, but in its pure state h.c.p.-iron still remains thermodynamically more favourable. The inner core, however, is not pure iron, and our calculations indicate that the b.c.c. phase will be stabilized with respect to the h.c.p. phase by sulphur or silicon impurities in the core. Consequently, a b.c.c.-structured alloy may be a strong candidate for explaining the observed seismic complexity of the inner core.

SELECTION OF CITATIONS
SEARCH DETAIL