Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611237

ABSTRACT

The article deals with the comparison of the bending behavior of cylindrical lattice samples with radially and orthogonally arranged cells made of ABS material. The structures were designed in PTC Creo Parametric 8 software, while four types of lattice structures were evaluated: Rhombus, Cuboidal BCC, Octagon, and Starry, in three material volume fractions: 44, 57, and 70%, together with tubular and rod-shaped samples. The Fused Filament Fabrication (FFF) technique was chosen for the production of ABS plastic samples. Based on the bending tests, the dependences of the force on the deflection were recorded and the obtained data were statistically processed to identify outliers using the Grubbs test. The maximum stresses were calculated and the dependences of the stresses on the volume fractions were plotted. Along with energy absorption, ductility indices were also specified. Although the Rhombus structure appears to be the best based on the ductility indices obtained, on the other hand, the structure showed the lowest values of bending stresses (in the range from 10.6 to 12.6 MPa for volume fractions ranging from 44 to 70%, respectively). Therefore, from a synergic point of view of both factors, stress and ductility, the Starry structure exhibits the best flexural properties among those investigated.

2.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904439

ABSTRACT

In the planning stage of the fabrication process of physical models of cellular structures, a surface model of the structure needs to be adjusted to acquire the requisite properties, but errors emerge frequently at this stage. The main objective of this research was to repair or reduce the impact of deficiencies and errors before the fabrication of physical models. For this purpose, it was necessary to design models of cellular structures with different accuracy settings in PTC Creo and then compare them after the tessellation process using GOM Inspect. Subsequently, it was necessary to locate the errors occurring in the process of preparing models of cellular structures and propose an appropriate method of their repair. It was found that the Medium Accuracy setting is adequate for the fabrication of physical models of cellular structures. Subsequently, it was found that within regions where mesh models merged, duplicate surfaces emerged, and the entire model could be considered as manifesting non-manifold geometry. The manufacturability check showed that in the regions with duplicate surfaces inside the model, the toolpath creation strategy changed, causing local anisotropy within 40% of the fabricated model. A non-manifold mesh was repaired in the proposed manner of correction. A method of smoothing the model's surface was proposed, reducing the polygon mesh density and the file size. The findings and proposed methods of designing cellular models, error repair and smoothing methods of the models can be used to fabricate higher-quality physical models of cellular structures.

SELECTION OF CITATIONS
SEARCH DETAIL