Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Sci Transl Med ; 15(712): eabn5939, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37672568

ABSTRACT

Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Vascular Calcification , Humans , Animals , Mice , Aged , Leukocyte L1 Antigen Complex , Renal Insufficiency, Chronic/complications , Alarmins
2.
EBioMedicine ; 91: 104546, 2023 May.
Article in English | MEDLINE | ID: mdl-37023531

ABSTRACT

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Subject(s)
Adaptor Proteins, Signal Transducing , Bone Density , N-Acetylgalactosaminyltransferases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bone and Bones , Bone Density/genetics , Glucocorticoids/pharmacology , Glycosylation , Humans
3.
J Am Heart Assoc ; 11(20): e026076, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36216458

ABSTRACT

Background Spinal cord ischemia (SCI) remains a devastating complication after aortic dissection or repair. A primary hypoxic damage is followed by a secondary damage resulting in further cellular loss via apoptosis. Affected patients have a poor prognosis and limited therapeutic options. Shock wave therapy (SWT) improves functional outcome, neuronal degeneration and survival in murine spinal cord injury. In this first-in-human study we treated 5 patients with spinal cord ischemia with SWT aiming to prove safety and feasibility. Methods and Results Human neurons were subjected to ischemic injury with subsequent SWT. Reactive oxygen species and cellular apoptosis were quantified using flow cytometry. Signaling of the antioxidative transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) and immune receptor Toll-like receptor 3 (TLR3) were analyzed. To assess whether SWT act via a conserved mechanism, transgenic tlr3-/- zebrafish created via CRISPR/Cas9 were subjected to spinal cord injury. To translate our findings into a clinical setting, 5 patients with SCI underwent SWT. Baseline analysis and follow-up (6 months) included assessment of American Spinal Cord Injury Association (ASIA) impairment scale, evaluation of Spinal Cord Independence Measure score and World Health Organization Quality of Life questionnaire. SWT reduced the number of reactive oxygen species positive cells and apoptosis upon ischemia via induction of the antioxidative factor nuclear factor erythroid 2-related factor 2. Inhibition or deletion of tlr3 impaired axonal growth after spinal cord lesion in zebrafish, whereas tlr3 stimulation enhanced spinal regeneration. In a first-in-human study, we treated 5 patients with SCI using SWT (mean age, 65.3 years). Four patients presented with acute aortic dissection (80%), 2 of them exhibited preoperative neurological symptoms (40%). Impairment was ASIA A in 1 patient (20%), ASIA B in 3 patients (60%), and ASIA D in 1 patient (20%) at baseline. At follow-up, 2 patients were graded as ASIA A (40%) and 3 patients as ASIA B (60%). Spinal cord independence measure score showed significant improvement. Examination of World Health Organization Quality of Life questionnaires revealed increased scores at follow-up. Conclusions SWT reduces oxidative damage upon SCI via immune receptor TLR3. The first-in-human application proved safety and feasibility in patients with SCI. SWT could therefore become a powerful regenerative treatment option for this devastating injury.


Subject(s)
Aortic Dissection , Extracorporeal Shockwave Therapy , Spinal Cord Injuries , Spinal Cord Ischemia , Humans , Mice , Animals , Aged , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/therapeutic use , NF-E2-Related Factor 2 , Zebrafish , Feasibility Studies , Reactive Oxygen Species , Quality of Life , Spinal Cord Ischemia/etiology , Spinal Cord Ischemia/prevention & control , Spinal Cord Ischemia/pathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord/metabolism , Oxidative Stress , Ischemia , Aortic Dissection/pathology
4.
Biomolecules ; 12(8)2022 08 21.
Article in English | MEDLINE | ID: mdl-36009051

ABSTRACT

Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of ß-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased ß-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/ß-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvß3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of ß-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvß3 and the activation of the WNT/ß-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Cells, Cultured , Humans , Integrin alphaVbeta3/metabolism , Muscle, Smooth, Vascular/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Calcification/genetics , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
5.
Front Cardiovasc Med ; 9: 771096, 2022.
Article in English | MEDLINE | ID: mdl-35141300

ABSTRACT

Patients with primary aldosteronism (PA) are more susceptible to cardiovascular disease and mortality than patients with primary hypertension. This is mostly attributed to excess production of aldosterone and its effects on the development of vascular injury. A novel functional test (T50) measures serum calcification propensity. Lower T50-values predict higher cardiovascular risk. We investigated serum calcification propensity and vascular calcification in PA and resistant hypertension (RH). T50 measurement was performed in patients with PA (n = 66) and RH (n = 28) at baseline and after 403 (279-640) and 389 (277-527) days of treatment. No significant differences in T50-values were observed between the groups (371 ± 65 and 382 ± 44 min, in PA and RH group, respectively, p > 0.05). However, higher aldosterone-to-renin ratios were associated with lower T50-values in PA-patients (r -0.282, p < 0.05). Furthermore, lower T50-values were associated with increased abdominal aortic calcification measured by Agatston score in PA (r -0.534, p < 0.05). In both, PA and RH, higher atherosclerotic cardiovascular disease (ACSVD) scores (r -0.403, p < 0.05) and lower HDL (r 0.469, p < 0.05) was related to lower T50-values in a linear regression model. Adrenalectomy or medical treatment did not increase T50-values. In comparison to patients with stable T50-values, PA patients with a decrease in T50 after intervention had higher serum calcium concentrations at baseline (2.24 ± 0.11 vs. 2.37 ± 0.10 mmol/l, p < 0.05). This decline of T50-values at follow-up was also associated with a decrease in serum magnesium (-0.03 ± 0.03 mmol/l, p < 0.05) and an increase in phosphate concentrations (0.11 ± 0.11 mmol/l, p < 0.05). Resistant hypertension patients with a decrease in T50-values at follow-up had a significantly lower eGFR at baseline. In summary, these data demonstrate an association between a high aldosterone-to-renin ratio and low T50-values in PA. Moreover, lower T50-values are associated with higher ACSVD scores and more pronounced vascular calcification in PA. Thus, serum calcification propensity may be a novel modifiable risk factor in PA.

6.
Hum Mol Genet ; 31(5): 792-802, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34542150

ABSTRACT

The protein α-Klotho acts as transmembrane co-receptor for fibroblast growth factor 23 (FGF23) and is a key regulator of phosphate homeostasis. However, α-Klotho also exists in a circulating form, with pleiotropic, but incompletely understood functions and regulation. Therefore, we undertook a genome-wide association study (GWAS) meta-analysis followed by Mendelian randomization (MR) of circulating α-Klotho levels. Plasma α-Klotho levels were measured by enzyme-linked immunosorbent assay (ELISA) in the Ludwigshafen Risk and Cardiovascular Health and Avon Longitudinal Study of Parents and Children (mothers) cohorts, followed by a GWAS meta-analysis in 4376 individuals across the two cohorts. Six signals at five loci were associated with circulating α-Klotho levels at genome-wide significance (P < 5 × 10-8), namely ABO, KL, FGFR1, and two post-translational modification genes, B4GALNT3 and CHST9. Together, these loci explained >9% of the variation in circulating α-Klotho levels. MR analyses revealed no causal relationships between α-Klotho and renal function, FGF23-dependent factors such as vitamin D and phosphate levels, or bone mineral density. The screening for genetic correlations with other phenotypes followed by targeted MR suggested causal effects of liability of Crohn's disease risk [Inverse variance weighted (IVW) beta = 0.059 (95% confidence interval 0.026, 0.093)] and low-density lipoprotein cholesterol levels [-0.198 (-0.332, -0.063)] on α-Klotho. Our GWAS findings suggest that two enzymes involved in post-translational modification, B4GALNT3 and CHST9, contribute to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability. Subsequent evidence from MR analyses on α-Klotho levels suggest regulation by mechanisms besides phosphate-homeostasis and raise the possibility of cross-talk with FGF19- and FGF21-dependent pathways, respectively. Significance statement: α-Klotho as a transmembrane protein is well investigated along the endocrine FGF23-α-Klotho pathway. However, the role of the circulating form of α-Klotho, which is generated by cleavage of transmembrane α-Klotho, remains incompletely understood. Genetic analyses might help to elucidate novel regulatory and functional mechanisms. The identification of genetic factors related to circulating α-Klotho further enables MR to examine causal relationships with other factors. The findings from the first GWAS meta-analysis of circulating α-Klotho levels identified six genome-wide significant signals across five genes. Given the function of two of the genes identified, B4GALNT3 and CHST9, it is tempting to speculate that post-translational modification significantly contributes to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Klotho Proteins , Longitudinal Studies , Phosphates/metabolism
8.
Cells ; 10(11)2021 11 09.
Article in English | MEDLINE | ID: mdl-34831306

ABSTRACT

In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.


Subject(s)
Glucose/toxicity , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Osteogenesis/drug effects , Zinc/pharmacology , Aorta/pathology , Biomarkers/metabolism , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Humans , Myocytes, Smooth Muscle/drug effects , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Biochem Biophys Res Commun ; 582: 28-34, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34678593

ABSTRACT

BACKGROUND: Vascular calcification is common in chronic kidney disease (CKD) and associated with increased cardiovascular mortality. Aldosterone has been implicated as an augmenting factor in the progression of vascular calcification. The present study further explored putative beneficial effects of aldosterone inhibition by the mineralocorticoid receptor antagonist spironolactone on vascular calcification in CKD. METHODS: Serum calcification propensity was determined in serum samples from the MiREnDa trial, a prospective, randomized controlled clinical trial to investigate efficacy and safety of spironolactone in maintenance hemodialysis patients. Experiments were conducted in mice with subtotal nephrectomy and cholecalciferol treatment, and in calcifying primary human aortic smooth muscle cells (HAoSMCs). RESULTS: Serum calcification propensity was improved by spironolactone treatment in patients on hemodialysis from the MiREnDa trial. In mouse models and HAoSMCs, spironolactone treatment ameliorated vascular calcification and expression of osteogenic markers. CONCLUSIONS: These observations support a putative benefit of spironolactone treatment in CKD-associated vascular calcification. Further research is required to investigate possible improvements in cardiovascular outcomes by spironolactone and whether the benefits outweigh the risks in patients with CKD.


Subject(s)
Aldosterone/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Renal Dialysis , Renal Insufficiency, Chronic/drug therapy , Spironolactone/pharmacology , Vascular Calcification/drug therapy , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Biomarkers/metabolism , Cholecalciferol/administration & dosage , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Gene Expression , Humans , Kidney/metabolism , Kidney/pathology , Kidney/surgery , Mice , Mice, Inbred DBA , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nephrectomy/methods , Primary Cell Culture , Prospective Studies , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Transcription Factor Pit-1/genetics , Transcription Factor Pit-1/metabolism , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology
10.
Pflugers Arch ; 473(12): 1899-1910, 2021 12.
Article in English | MEDLINE | ID: mdl-34564739

ABSTRACT

In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and ß-adrenergic receptors. The present study explored the effects of ß2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. ß2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of ß2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.


Subject(s)
Adrenergic Agents/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Signal Transduction/physiology , Vascular Calcification/metabolism , Aorta/metabolism , Calcium/metabolism , Cell Transdifferentiation/physiology , Cells, Cultured , Humans , Osteogenesis/physiology , Phosphates/metabolism , Renal Insufficiency, Chronic/metabolism
11.
J Endocr Soc ; 5(5): bvab017, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33869979

ABSTRACT

CONTEXT: Serum cortisol may be associated with cardiovascular risk factors and mortality in patients undergoing coronary angiography, but previous data on this topic are limited and controversial. OBJECTIVE: We evaluated whether morning serum cortisol is associated with cardiovascular risk factors, lymphocyte subtypes, and mortality. METHODS: This is a prospective cohort study performed at a tertiary care centre in south-west Germany between 1997 and 2000. We included 3052 study participants who underwent coronary angiography. The primary outcome measures were cardiovascular risk factors, lymphocyte subtypes, and all-cause and cardiovascular mortality. RESULTS: Serum cortisol was associated with an adverse cardiovascular risk profile, but there was no significant association with coronary artery disease or acute coronary syndrome. In a subsample of 2107 participants, serum cortisol was positively associated with certain lymphocyte subsets, including CD16+CD56+ (natural killer) cells (P < 0.001). Comparing the fourth versus the first serum cortisol quartile, the crude Cox proportional hazard ratios (with 95% CIs) were 1.22 (1.00-1.47) for all-cause and 1.32 (1.04-1.67) for cardiovascular mortality, respectively. After adjustments for various cardiovascular risk factors, these associations were attenuated to 0.93 (0.76-1.14) for all-cause, and 0.97 (0.76-1.25) for cardiovascular mortality, respectively. CONCLUSIONS: Despite significant associations with classic cardiovascular risk factors and natural killer cells, serum cortisol was not a significant and independent predictor of mortality in patients referred to coronary angiography. These findings might reflect that adverse cardiovascular effects of cortisol could be counterbalanced by some cardiovascular protective actions.

12.
Clin Sci (Lond) ; 135(3): 515-534, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33479769

ABSTRACT

In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


Subject(s)
Cell Transdifferentiation , Immediate-Early Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Sphingomyelin Phosphodiesterase/pharmacology , Vascular Calcification/pathology , Amitriptyline/pharmacology , Animals , Cells, Cultured , Ceramides/metabolism , Chondrogenesis/drug effects , Fendiline/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Osteogenesis/drug effects , Phosphates/pharmacology
13.
Clin Sci (Lond) ; 135(1): 201-227, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33416083

ABSTRACT

Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.


Subject(s)
Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Inflammation/metabolism , Inflammation/pathology , Phosphates/metabolism , Calcium/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Renal Insufficiency, Chronic/metabolism
14.
Cardiovasc Res ; 117(3): 930-941, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32243494

ABSTRACT

AIMS: Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS: Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1ß-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated ß cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS: Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.


Subject(s)
Cell Transdifferentiation , Cytokines/metabolism , Inflammation Mediators/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Renal Insufficiency, Chronic/blood , Uromodulin/blood , Vascular Calcification/prevention & control , Adult , Aged , Animals , Aorta/immunology , Aorta/metabolism , Cell Transdifferentiation/drug effects , Cells, Cultured , Chondrogenesis , Cytokines/genetics , Disease Models, Animal , Female , Humans , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/immunology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/immunology , Osteogenesis , Phenotype , Protein Carbamylation , Renal Insufficiency, Chronic/immunology , Signal Transduction , Uromodulin/genetics , Uromodulin/pharmacology , Vascular Calcification/blood , Vascular Calcification/immunology , Young Adult
15.
J Clin Med ; 9(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266290

ABSTRACT

Nitric oxide (NO) synthesis markers, comprising L-homoarginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), are significantly associated with cardiovascular events and mortality. Being involved in NO pathways, they may be of high importance regulating vascular tone and arterial hypertension, but data on this topic are sparse and controversial. In this study, we evaluated whether these NO synthesis markers are associated with blood pressure values and pulse wave velocity (PWV). This analysis was based on the data of the Styrian Vitamin D Hypertension Trial, which included adults with arterial hypertension. We analyzed correlations of NO synthesis markers with 24 h ambulatory blood pressure values and PWV (primary outcomes), as well as with anthropometric and laboratory data. A total of 509 patients were included in the present analysis. The mean age was 61.2 ± 10.5 years, mean PWV was 8.6 ± 2.4 m/s, mean 24 h systolic blood pressure was 127.5 ± 13.8 mmHg and mean 24 h diastolic blood pressure was 76.4 ± 9.5 mmHg. In bivariate analyses, there was a significant positive correlation between homoarginine and 24 h diastolic blood pressure (r = 0.1; p = 0.02), which was revealed to be no longer significant after adjustment for age, gender and glomerular filtration rate (GFR) in multivariate regression analysis. No other significant correlations of any NO synthesis markers with blood pressure or PWV were observed. In line with previous studies, there were inverse associations between homoarginine and age and between ADMA or SDMA and GFR (p < 0.05 for all). This study did not reveal a significant association between homoarginine, ADMA or SDMA and blood pressure or PWV in hypertensive adults. These results suggested that the associations of these parameters with adverse outcome may not be mediated by hypertension and/or endothelial dysfunction.

16.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003561

ABSTRACT

In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-kB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.


Subject(s)
Calcinosis/genetics , Diabetes Mellitus/genetics , Hyperglycemia/genetics , Immediate-Early Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Aorta/growth & development , Aorta/metabolism , Aorta/pathology , Benzamides/pharmacology , Calcinosis/metabolism , Calcinosis/pathology , Cell Transdifferentiation/genetics , Diabetes Mellitus/pathology , Glucose/adverse effects , Glycation End Products, Advanced/genetics , Humans , Hydrazines/pharmacology , Hyperglycemia/pathology , Immediate-Early Proteins/antagonists & inhibitors , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Osteogenesis/genetics , Primary Cell Culture , Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/genetics
17.
Horm Metab Res ; 52(12): 850-855, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32886945

ABSTRACT

Resting heart rate (RHR) is associated with increased risk of cardiovascular morbidity and mortality. Thyroid hormones exert several effects on the cardiovascular system, but the relation between thyroid function and RHR remains to be further established. We evaluated whether measures of thyroid hormone status are associated with RHR in patients referred to coronary angiography. Thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxin (FT4), and RHR were determined in 2795 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Median (25th to 75th percentile) serum concentrations were 1.25 (0.76-1.92) mU/l for TSH, 4.8 (4.2-5.3) pmol/l for FT3 and 17.1 (15.4-19.0) pmol/l for FT4, and mean (±standard deviation) RHR was 68.8 (±11.7) beats/min. Comparing the highest versus the lowest quartile, RHR (beats/min) was significantly higher in the fourth FT4 quartile [3.48, 95% confidence interval (CI): 2.23-4.73; p <0.001] and in the fourth FT3 quartile (2.30, 95% CI: 1.06-3.55; p <0.001), but there was no significant difference for TSH quartiles. In multiple linear regression analyses adjusting for various potential confounders, FT3 and FT4 were significant predictors of RHR (p <0.001 for both). In subgroups restricted to TSH, FT3, and FT4 values within the reference range, both FT3 and FT4 remained significant predictors of RHR (p <0.001 for all). In conclusion, in patients referred to coronary angiography, FT3 and FT4 but not TSH were positively associated with RHR. The relationship between free thyroid hormones and RHR warrants further investigations regarding its diagnostic and therapeutic implications.


Subject(s)
Cardiovascular Diseases/epidemiology , Coronary Angiography/methods , Heart Rate , Thyroid Hormones/blood , Aged , Austria/epidemiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/pathology , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors
19.
J Mol Med (Berl) ; 98(7): 985-997, 2020 07.
Article in English | MEDLINE | ID: mdl-32488546

ABSTRACT

In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor ß-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to ß-glycerophosphate. In VSMCs, ß-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. ß-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. ß-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, ß-glycerophosphate increased non-glycolytic acidification. ß-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated ß-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, ß-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. KEY MESSAGES: ß-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. ß-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. ß-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. ß-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact ß-glycerophosphate-induced VSMC calcification.


Subject(s)
Energy Metabolism/physiology , Glycerophosphates/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Aorta/metabolism , Cell Transdifferentiation/physiology , Cells, Cultured , Chondrogenesis/physiology , Humans , Hyperphosphatemia/metabolism , Osteogenesis/physiology , Phosphates/metabolism , Renal Insufficiency, Chronic/metabolism , Signal Transduction/physiology , Vascular Calcification/metabolism
20.
Pflugers Arch ; 472(8): 1093-1102, 2020 08.
Article in English | MEDLINE | ID: mdl-32556706

ABSTRACT

Diabetes and chronic kidney disease (CKD) both trigger vascular osteogenic signaling and calcification leading to early death by cardiovascular events. Osteogenic signaling involves upregulation of the transcription factors CBFA1, MSX2, and SOX9, as well as alkaline phosphatase (ALP), an enzyme fostering calcification by degrading the calcification inhibitor pyrophosphate. In CKD, osteogenic signaling is triggered by hyperphosphatemia, which upregulates the serum and glucocorticoid-inducible kinase SGK1, a strong stimulator of the Ca2+-channel ORAI1. The channel is activated by STIM1 and accomplishes store-operated Ca2+-entry (SOCE). The present study explored whether exposure of human aortic smooth muscle cells (HAoSMCs) to high extracellular glucose concentrations similarly upregulates ORAI1 and/or STIM1 expression, SOCE, and osteogenic signaling. To this end, HAoSMCs were exposed to high extracellular glucose concentrations (15 mM, 24 h) without or with additional exposure to the phosphate donor ß-glycerophosphate. Transcript levels were estimated using qRT-PCR, protein abundance using Western blotting, ALP activity using a colorimetric assay kit, calcium deposits utilizing Alizarin red staining, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). As a result, glucose enhanced the transcript levels of SGK1 and ORAI1, ORAI2, and STIM2, protein abundance of ORAI1, SOCE, the transcript levels of CBFA1, MSX2, SOX9, and ALPL, as well as calcium deposits. Moreover, glucose significantly augmented the stimulating effect of ß-glycerophosphate on transcript levels of SGK1 and ORAI1, SOCE, the transcript levels of osteogenic markers, as well as calcium deposits. ORAI1 inhibitor MRS1845 (10 µM) significantly blunted the glucose-induced upregulation of the CBFA1 and MSX2 transcript levels. In conclusion, the hyperglycemia of diabetes stimulates expression of SGK1 and ORAI1, thus, augmenting store-operated Ca2+-entry and osteogenic signaling in HAoSMCs.


Subject(s)
Aorta/metabolism , Calcium/metabolism , Glucose/metabolism , Myocytes, Smooth Muscle/metabolism , ORAI1 Protein/metabolism , Osteogenesis/physiology , Signal Transduction/physiology , Biomarkers/metabolism , Cells, Cultured , Diabetes Mellitus/metabolism , Humans , Hyperglycemia/metabolism , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...