Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 893: 164807, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37315607

ABSTRACT

Plastic particles can impact the environmental fate and bioavailability of essential inorganic micronutrients and non-essential (toxic) metals. The sorption of metals to environmental plastic has been demonstrated to be facilitated by plastic ageing, a phenomenon encompassing an array of physical, chemical, and biological processes. This study deploys a factorial experiment to untangle the role of different ageing processes in determining the sorption of metals. Plastics made of three different polymer types were aged both through abiotic (ultraviolet irradiation, UV) and biotic (through the incubation with a multispecies algal inoculum forming a biofilm) processes under controlled laboratory conditions. Pristine and aged plastic samples were characterized for their physiochemical properties through Fourier-transformed infrared spectroscopy, scanning electron microscopy and water contact angle measurements. Their sorption affinity toward aluminum (Al) and copper (Cu) in aqueous solutions was then assessed as a response variable. All ageing processes (alone or combined) influenced plastic surface properties resulting in reduced hydrophobicity, changes in surface functional groups (i.e., increase of oxygen containing functional groups after UV ageing and the appearance of marked bands as amides and polysaccharides after biofouling), as well as in nanomorphology. The sorption of Al and Cu was instead statistically dependent (p < 0.01) on the degree of biofouling covering the specimens. Biofouled plastic displayed in fact substantial affinity for metal sorption causing the depletion of up to tenfold Cu and Al compared to pristine polymers, regardless of the polymer type and presence or absence of other ageing treatments. These results confirm the hypothesis that the accumulation of metals on plastic is substantially driven by the biofilm present on environmental plastics. These findings also highlight the importance of investigating the implications of environmental plastic for metal and inorganic nutrients availability in environments impacted by this pollution.


Subject(s)
Biofouling , Water Pollutants, Chemical , Plastics/chemistry , Water Pollutants, Chemical/analysis , Metals , Copper , Water , Aluminum
2.
Chemosphere ; 283: 131200, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34157625

ABSTRACT

The presence of unidentified organofluorine compounds (UOF) has been investigated in recent publication, but their environmental occurrence is still poorly understood. Fluorine mass balance analysis was performed on environmental samples from lake Mjøsa and river Alna (surface water (n = 9), sediment (n = 5) and fish liver (n = 4)) and sewage samples from Oslo (n = 5), to reveal to the fraction of UOF. In samples that had extractable organofluorine (EOF) concentrations above the limit of detection (LoD), more than 70% of their EOF could not be accounted for by the 37 PFAS monitored in this study. The surface water samples from lake Mjøsa had EOF concentrations several times higher than what has been reported elsewhere in Nordic nations. The flux of EOF in river Alna and selected sewage pipes revealed that it was 1-2 orders of magnitude higher than the flux of the measured PFAS. The elevated concentrations of EOF in all samples pose a potential health and environmental hazard, as their composition remains mostly unknown.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Environmental Monitoring , Fluorides , Fluorine/analysis , Fluorocarbons/analysis , Norway , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 52(16): 9431-9441, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30048126

ABSTRACT

In this study, a lab-scale wastewater treatment plant (WWTP), simulating biological treatment, received 10 µg/L Ag and 100 µg/L TiO2 nanoparticles (NPs) for 5 weeks. NP partitioning was evaluated by size fractionation (>0.7 µm, 0.1-0.7 µm, 3 kDa-0.1 µm, < 3 kDa) using inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS and transmission electron microscopy. The ecotoxicological effects of the transformed NPs in the effluent were assessed using a battery of marine and freshwater bioassays (algae and crustaceans) and an in vitro gill cell line model (RTgill-W1). TiO2 aggregates were detected in the effluent, whereas Ag NPs (0.1-0.22 µg/L) were associated with S, Cu, Zn. Fractionation showed that >80% of Ag and Ti were associated with the effluent solids. Increased toxicity was observed during weeks 2-3 and the effects were species-dependent; with marine epibenthic copepods and algae being the most sensitive. Increased reactive oxygen species formation was observed in vitro followed by an increase in epithelial permeability. The effluent affected the gill epithelium integrity in vitro and impacted defense pathways (upregulation of multixenobiotic resistance genes). To our knowledge, this is the first study to combine a lab-scale activated sludge WWTP with extensive characterization techniques and ecotoxicological assays to study the effects of transformed NPs in the effluent.


Subject(s)
Metal Nanoparticles , Nanoparticles , Water Pollutants, Chemical , Silver , Titanium , Wastewater
6.
Water Sci Technol ; 77(3-4): 1115-1126, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29488975

ABSTRACT

The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.


Subject(s)
Drug Resistance, Microbial , Escherichia coli/isolation & purification , Filtration/methods , Waste Disposal, Fluid/methods , Water Pollutants/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Norway , Wastewater/chemistry
7.
Mar Pollut Bull ; 73(1): 24-36, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23816308

ABSTRACT

Since 2005, five different ballast water management systems (BWMSs) based on chlorination treatment have been tested by Norwegian Institute for Water Research (NIVA) according to guidelines from the International Maritime Organization (IMO). 25% and >50% of all the tested discharge samples exhibited acute and chronic toxic effects on algae, respectively. In most cases this toxicity was plausibly caused by a high free residual oxidant (FRO) level (>0.08 mg Cl/l). Of the 22 disinfection by-products (DBPs) that were identified in treated water at discharge, four compounds were at times found at concentrations that may pose a risk to the local aquatic environment. However, there seemed to be no clear indication that the measured DBP concentrations contributed to the observed algal toxicity. The addition of methylcellulose instead of lignin in the test water to comply with IMO requirements seemed to limit the formation of DBP.


Subject(s)
Disinfectants/toxicity , Disinfection/methods , Seawater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Animals , Disinfectants/analysis , Oxidation-Reduction , Risk Assessment , Ships , Toxicity Tests , Water Pollutants, Chemical/analysis
8.
Water Sci Technol ; 61(12): 3188-97, 2010.
Article in English | MEDLINE | ID: mdl-20555216

ABSTRACT

We present an assessment of xenobiotic organic micro-pollutants (XOM) occurrence and removal of polycyclic aromatic hydrocarbons (PAHs) in a novel biofilm system combined with ozonation, the BIOZO concept, treating partly stabilised landfill leachate. A novel, staged moving-bed biofilm reactor (SMBBR) design was implemented in laboratory- and pilot-scale, and the PAHs removal efficiency of controlled ozonation was assessed installing the ozonation step in the nitrate recirculation line (Position 1) or between the pre-anoxic and aerobic zones (Position 2). COD removal in a laboratory- and in a pilot-scale SMBBR system with and without ozonation is additionally addressed. Results obtained in a screening study (GC-ToF-MS) were used to compile a priority list of XOMs in leachate based on relative occurrence, showing PAHs as the predominant fraction. Biological treatment is shown to be an effective means to remove PAHs detected in the aqueous phase. PAH removal takes in most part place in the pre-anoxic zone, thereby decreasing toxicity exhibited by PAH on autotrophic nitrifier bacteria in the aerobic zone. Ozonation installed in Position 2 is shown to be superior over Position I in terms of COD, PAH and nitrogen removal efficiencies. We additionally demonstrate the potential of intermittent sludge ozonation as a means to decrease PAH concentrations in sludge wasted and to improve nitrogen removal in the BIOZO system.


Subject(s)
Biofilms , Nitrogen/isolation & purification , Ozone , Polycyclic Aromatic Hydrocarbons/isolation & purification , Water Pollutants, Chemical/isolation & purification , Bioreactors , Chromatography, Gas , Equipment Design , Humans , Mass Spectrometry , Mutagens/isolation & purification , Pilot Projects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
9.
Environ Monit Assess ; 164(1-4): 81-92, 2010 May.
Article in English | MEDLINE | ID: mdl-19353285

ABSTRACT

The HOBAS aeration system was tested to compare changes in environmental and bacteriological parameters in ponds growing Penaeus monodon during a single production cycle. The stocking density in the aerated pond was doubled to 12 post-larvae (PL) m(-2) in contrast to the non-aerated pond with 6 (PL) m(-2). Microbial abundance in the ponds ranged between 10(5-6) cells ml(-1). Among the physiological groups of bacteria enumerated, the heterotrophs dominated with an abundance of 10(4) CFU ml(-1). Of the nitrogen and sulfur cycle bacteria, the nitrifiers flourished in the aerated pond and could maintain ammonia-N concentration within permissible levels. Bacterial activity also maintained sulfide concentrations at < 0.03 mg l(-1). Non-aerated conditions promoted denitrification maintaining nitrate concentration between 0.32 and 0.98 microM NO(3)(-)-N l(-1). However, a marked increase in ammonium content was observed in the non-aerated pond at the end of the culture period. Thus in high-density ponds, the aerators served to stimulate bacterial growth and activity which consequently maintained the quality of the water to match that of low-density ponds. Accordingly, these aerators could be effectively used to sustain higher yields. The effluent from the aerated pond is less likely to alter the redox balance of the receiving waters.


Subject(s)
Air , Aquaculture , Water Microbiology , Water/chemistry , Animals , Colony Count, Microbial , Crustacea
10.
Water Res ; 40(19): 3559-70, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16996560

ABSTRACT

In Norway the combined hydraulic capacity of all domestic wastewater treatment plants is relatively equally distributed between three major treatment plant types; mechanical, chemical, and combined chemical and biological. The Western coast from Lindesnes in the south to the Russian boarder in the North is dominated by mechanical treatment plants, constituting approximately 68% of the treatment capacity in that area. In the present study we report concentrations and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs), nonylphenols, phthalates, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) found in five Norwegian wastewater treatment plants (WWTPs) applying different levels of treatment. Concentrations of organic micropollutants in the influents to the WWTPs were generally in the low range of what have been reported by others for domestic wastewater in Europe and North-America. More than 90% removal could be obtained for nonylphenols, PBDEs, and the more hydrophobic 4-6 ring PAHs by chemical precipitation, however, biological treatment appeared to be necessary for efficient removal of the less lipophilic 2 and 3 ring PAHs, the medium- to short-chained nonylphenol ethoxylates and diethyl phthalate. SigmaPCB(7) was removed by more than 90% by combined biological/chemical treatment, while removal efficiency by chemical treatment was not possible to estimate due to low inlet concentrations. Low or insignificant removals of PAHs, phthalates and nonylphenols with their ethoxylates were observed at the mechanical WWTP, which was in accordance with the minuscule removal of TOC.


Subject(s)
Combinatorial Chemistry Techniques/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Ethers/analysis , Norway , Phthalic Acids/analysis , Polybrominated Biphenyls/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sewage/chemistry , Sewage/microbiology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...