Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 74: 128928, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35961460

ABSTRACT

Based on knowledge of kinase switch-control inhibition and using a combination of structure-based drug design and standard medicinal chemistry principles, we identified a novel series of dihydropyrimidone-based CSF1R kinase inhibitors displaying exquisite selectivity for CSF1R versus a large panel of kinases and non-kinase protein targets. Starting with lead compound 3, an SAR optimization campaign led to the discovery of vimseltinib (DCC-3014; compound 20) currently undergoing clinical evaluation for the treatment of Tenosynovial Giant Cell Tumor (TGCT), a locally aggressive benign tumor associated with substantial morbidity. 2021 Elsevier ltd. All rights reserved.


Subject(s)
Antineoplastic Agents , Giant Cell Tumor of Tendon Sheath , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DCC Receptor , Giant Cell Tumor of Tendon Sheath/drug therapy , Giant Cell Tumor of Tendon Sheath/pathology , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases , Receptor, Macrophage Colony-Stimulating Factor
2.
Bioorg Med Chem Lett ; 74: 128929, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35961461

ABSTRACT

Based on the structure of an early lead identified in Deciphera's proprietary compound collection of switch control kinase inhibitors and using a combination of medicinal chemistry guided structure activity relationships and structure-based drug design, a novel series of potent acyl urea-based CSF1R inhibitors was identified displaying high selectivity for CSF1R versus the other members of the Type III receptor tyrosine kinase (RTK) family members (KIT, PDGFR-α, PDGFR-ß, and FLT3), VEGFR2 and MET. Based on in vitro biology, in vitro ADME and in vivo PK/PD studies, compound 10 was selected as an advanced lead for Deciphera's CSF1R research program.


Subject(s)
Receptor Protein-Tyrosine Kinases , Urea , Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, Platelet-Derived Growth Factor beta , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology
3.
Mol Cancer Ther ; 20(11): 2098-2109, 2021 11.
Article in English | MEDLINE | ID: mdl-34433663

ABSTRACT

Macrophages can be co-opted to contribute to neoplastic, neurologic, and inflammatory diseases. Colony-stimulating factor 1 receptor (CSF1R)-dependent macrophages and other inflammatory cells can suppress the adaptive immune system in cancer and contribute to angiogenesis, tumor growth, and metastasis. CSF1R-expressing osteoclasts mediate bone degradation in osteolytic cancers and cancers that metastasize to bone. In the rare disease tenosynovial giant cell tumor (TGCT), aberrant CSF1 expression and production driven by a gene translocation leads to the recruitment and growth of tumors formed by CSF1R-dependent inflammatory cells. Small molecules and antibodies targeting the CSF1/CSF1R axis have shown promise in the treatment of TGCT and cancer, with pexidartinib recently receiving FDA approval for treatment of TGCT. Many small-molecule kinase inhibitors of CSF1R also inhibit the closely related kinases KIT, PDGFRA, PDGFRB, and FLT3, thus CSF1R suppression may be limited by off-target activity and associated adverse events. Vimseltinib (DCC-3014) is an oral, switch control tyrosine kinase inhibitor specifically designed to selectively and potently inhibit CSF1R by exploiting unique features of the switch control region that regulates kinase conformational activation. In preclinical studies, vimseltinib durably suppressed CSF1R activity in vitro and in vivo, depleted macrophages and other CSF1R-dependent cells, and resulted in inhibition of tumor growth and bone degradation in mouse cancer models. Translationally, in a phase I clinical study, vimseltinib treatment led to modulation of biomarkers of CSF1R inhibition and reduction in tumor burden in TGCT patients.


Subject(s)
Giant Cell Tumor of Tendon Sheath/drug therapy , Macrophages/drug effects , Protein Kinase Inhibitors/therapeutic use , Adult , Animals , Cell Proliferation , Cross-Over Studies , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Nude , Middle Aged , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Young Adult
4.
Cancer Cell ; 35(5): 738-751.e9, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31085175

ABSTRACT

Ripretinib (DCC-2618) was designed to inhibit the full spectrum of mutant KIT and PDGFRA kinases found in cancers and myeloproliferative neoplasms, particularly in gastrointestinal stromal tumors (GISTs), in which the heterogeneity of drug-resistant KIT mutations is a major challenge. Ripretinib is a "switch-control" kinase inhibitor that forces the activation loop (or activation "switch") into an inactive conformation. Ripretinib inhibits all tested KIT and PDGFRA mutants, and notably is a type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitors. Ripretinib shows efficacy in preclinical cancer models, and preliminary clinical data provide proof-of-concept that ripretinib inhibits a wide range of KIT mutants in patients with drug-resistant GISTs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Cricetulus , Drug Resistance, Neoplasm/genetics , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , HCT116 Cells , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mutation/drug effects , Mutation/genetics
5.
Biochemistry ; 55(38): 5434-41, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27571378

ABSTRACT

Palbociclib is a cyclin-dependent kinase (CDK) 4/CDK6 inhibitor approved for breast cancer that is estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative. We profiled palbociclib in cells either sensitive or resistant to the drug using an ATP/ADP probe-based chemoproteomics platform. Palbociclib only engaged CDK4 or CDK6 in sensitive cells. In resistant cells, no inhibition of CDK4 or CDK6 was observed, although the off-target profiles were similar in both cell types. Prolonged incubation of sensitive cells with the compound (24 h) resulted in the downregulation of additional kinases, including kinases critical for cell cycle progression. This downregulation is consistent with cell cycle arrest caused by palbociclib treatment. Both the direct and indirect targets were also observed in a human tumor xenograft study using the COLO-205 cell line in which phosphorylation of the retinoblastoma protein was tracked as the pharmacodyanamic marker. Together, these results suggest that this probe-based approach could be an important strategy toward predicting patient responsiveness to palbociclib.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Neoplasms/pathology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteomics , Pyridines/pharmacology , Animals , Cell Line, Tumor , Humans , Mice , Neoplasms/enzymology , Xenograft Model Antitumor Assays
6.
Cancer Cell ; 28(3): 384-98, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26343583

ABSTRACT

LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Protein Isoforms/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Pyrimidines/pharmacology , ras Proteins/genetics , Cell Line, Tumor , Dimerization , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation/drug effects , Mutation/genetics , Neoplasms/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Isoforms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-raf/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
7.
Mol Cancer Ther ; 14(9): 2023-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26285778

ABSTRACT

Altiratinib (DCC-2701) was designed based on the rationale of engineering a single therapeutic agent able to address multiple hallmarks of cancer (1). Specifically, altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 (KDR) kinases. This profile was achieved by optimizing binding into the switch control pocket of all three kinases, inducing type II inactive conformations. Altiratinib durably inhibits MET, both wild-type and mutated forms, in vitro and in vivo. Through its balanced inhibitory potency versus MET, TIE2, and VEGFR2, altiratinib provides an agent that inhibits three major evasive (re)vascularization and resistance pathways (HGF, ANG, and VEGF) and blocks tumor invasion and metastasis. Altiratinib exhibits properties amenable to oral administration and exhibits substantial blood-brain barrier penetration, an attribute of significance for eventual treatment of brain cancers and brain metastases.


Subject(s)
Aminopyridines/pharmacology , Anilides/pharmacology , Drug Resistance, Neoplasm , Neovascularization, Pathologic , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor, TIE-2/antagonists & inhibitors , Tumor Microenvironment , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Aminopyridines/chemistry , Anilides/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bevacizumab/chemistry , Bevacizumab/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drug Design , Drug Therapy, Combination , Female , Hepatocyte Growth Factor/metabolism , Humans , Inhibitory Concentration 50 , Melanoma, Experimental , Mice , Models, Molecular , Molecular Conformation , Monocytes/drug effects , Monocytes/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Receptor, TIE-2/metabolism , Recombinant Proteins , Stromal Cells/drug effects , Stromal Cells/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
8.
J Med Chem ; 58(10): 4165-79, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25965804

ABSTRACT

The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations. In order to eliminate the issues associated with paradoxical MAPK pathway activation and to provide therapeutic benefit to patients with RAS mutant cancers, we sought to identify a compound not only active against BRAF V600E but also wild type BRAF and CRAF. On the basis of its superior in vitro and in vivo profile, compound 13 was selected for further development and is currently being evaluated in phase I clinical studies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Pyrimidines/chemistry , Pyrimidines/pharmacology , ras Proteins/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor/drug effects , Chemistry Techniques, Synthetic , Dogs , Female , Half-Life , Humans , Male , Mice, Nude , Molecular Targeted Therapy , Mutation , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacokinetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...