Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659848

ABSTRACT

Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviors. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin releasing factor, opioids, insulin and leptin, which can influence an animal's behavior by signaling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridization on mouse striatal tissue to characterize the effect of sex and sex hormones on choline acetyltransferase ( Chat ), estrogen receptor alpha ( Esr1 ), and corticotropin releasing factor type 1 receptor ( Crhr1 ) expression. Although we did not detect sex differences in ChAT protein levels in the striatum, we found that female mice have more Chat mRNA-expressing neurons than males. At the population level, we observed a sexually dimorphic distribution of Esr1 - and Crhr1 -expressing ChIs in the ventral striatum that demonstrates an antagonistic correlational relationship, which is abolished by ovariectomy. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 . At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during estrus, indicating that changes in sex hormones levels can modulate the interaction between Crhr1 and Esr1 mRNA levels. Together, these data provide evidence for the unique expression and interaction of Esr1 and Crhr1 in ventral striatal ChIs, warranting further investigation into how these transcriptomic patterns might underlie important functions for ChIs at the intersection of stress and reproductive behaviors.

2.
Brain Behav Immun Health ; 35: 100700, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38107021

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a complex behavioral disorder characterized by hyperactivity, impulsivity, inattention, and deficits in working memory and time perception. While animal models have advanced our neurobiological understanding of this condition, there are limited and inconsistent data on working and elapsed time memory function. Inflammatory signaling has been identified as a key factor in memory and cognitive impairments, but its role in ADHD remains unclear. Additionally, the disproportionate investigation of male subjects in ADHD research has contributed to a poor understanding of the disorder in females. This study sought to investigate the potential connections between memory, neuroimmunology, and ADHD in both male and female animals. Specifically, we utilized the spontaneously hypertensive rat (SHR), one of the most extensively studied animal models of ADHD. Compared to their control, the Wistar-Kyoto (WKY) rat, male SHR are reported to exhibit several behavioral phenotypes associated with ADHD, including hyperactivity, impulsivity, and poor sustained attention, along with impairments in learning and memory. As the hippocampus is a key brain region for learning and memory, we examined the behavior of male and female SHR and WKY rats in two hippocampal-dependent memory tasks. Our findings revealed that SHR have delay-dependent working memory deficits that were similar to, albeit less severe than, those seen in hippocampal-lesioned rats. We also observed impairments in elapsed time processing in female SHR, particularly in the discrimination of longer time durations. To investigate the impact of inflammatory signaling on memory in these rats, we analyzed the levels of several cytokines in the dorsal and ventral hippocampus of SHR and WKY. Although we found some sex and genotype differences, concentrations were generally similar between groups. Taken together, our results indicate that SHR exhibit deficits in spatial working memory and memory for elapsed time, as well as some differences in hippocampal cytokine concentrations. These findings contribute to a better understanding of the neurobiological basis of ADHD in both sexes and may inform future research aimed at developing effective treatments for the disorder. Nonetheless, the potential mediating role of neuroinflammation in the memory symptomatology of SHR requires further investigation.

3.
Bio Protoc ; 11(6): e3965, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33855123

ABSTRACT

Space and time are both essential features of episodic memory. However, while spatial tasks have been used effectively to study the behavioral relevance of place cells, the behavioral paradigms utilized for the study of time cells have not used time duration as a variable that animals need to be aware of to solve the task. In order to evaluate how time flow is coded into memory, time duration needs to be a variable that animals use to solve the behavioral task. This protocol describes a novel behavioral paradigm, the time duration discrimination (TDD) task, which is designed to directly investigate the neurological mechanisms that underlie temporal processing. During the TDD task, rats navigate around a Figure-8 Maze, which contains a rectangular track with a central arm and a delay box at the end of the central arm. While confined to the delay box, rats experience a 10- or 20-second time delay, during which a tone will play for the duration of the 10- or 20-second delay. When the delay box opens, the rat will choose whether to turn left or right out of the delay box and receive a reward for the correct choice (e.g., 10 seconds = left turn; 20 seconds = right turn). By directly manipulating elapsed time, we can better explore the behavioral relevance of hippocampal time cells and whether the time-dependent activity seen in physiological recordings of hippocampal neurons reflects a neuronal representation of time flow that can be used by the animal for learning and storing memories. Graphic abstract: Elapsed time duration discrimination in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...