Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Article in English | MEDLINE | ID: mdl-34014371

ABSTRACT

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Subject(s)
Adipocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation/physiology , Glucocorticoids/pharmacology , Obesity/genetics , Transcription Factors/genetics , Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Adult , Aged , Animals , Cross-Sectional Studies , Female , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Real-Time Polymerase Chain Reaction , Signal Transduction , Young Adult
2.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: mdl-33536239

ABSTRACT

Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under preclinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernible impact on systemic glucose and lipid metabolism, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.


Subject(s)
Energy Metabolism , Insulin Secretion , Lipocalins/genetics , Lipocalins/metabolism , Animals , Biomarkers , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Glucose/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Lipid Metabolism , Lipocalins/blood , Liver/metabolism , Male , Mice , Obesity/etiology , Obesity/metabolism
3.
EMBO Rep ; 20(11): e48552, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31559673

ABSTRACT

Aberrant activity of the glucocorticoid (GC)/glucocorticoid receptor (GR) endocrine system has been linked to obesity-related metabolic dysfunction. Traditionally, the GC/GR axis has been believed to play a crucial role in adipose tissue formation and function in both, white (WAT) and brown adipose tissue (BAT). While recent studies have challenged this notion for WAT, the contribution of GC/GR signaling to BAT-dependent energy homeostasis remained unknown. Here, we have generated and characterized a BAT-specific GR-knockout mouse (GRBATKO ), for the first time allowing to genetically interrogate the metabolic impact of BAT-GR. The HPA axis in GRBATKO mice was intact, as was the ability of mice to adapt to cold. BAT-GR was dispensable for the adaptation to fasting-feeding cycles and the development of diet-induced obesity. In obesity, glucose and lipid metabolism, insulin sensitivity, and food intake remained unchanged, aligning with the absence of changes in thermogenic gene expression. Together, we demonstrate that the GR in UCP1-positive BAT adipocytes plays a negligible role in systemic metabolism and BAT function, thereby opposing a long-standing paradigm in the field.


Subject(s)
Adipocytes, Brown/metabolism , Energy Metabolism , Homeostasis , Receptors, Glucocorticoid/metabolism , Animals , Body Weight , Cold-Shock Response , Fasting , Mice , Mice, Knockout
4.
FASEB J ; 33(5): 5924-5941, 2019 05.
Article in English | MEDLINE | ID: mdl-30742779

ABSTRACT

The glucocorticoid receptor (GR) represents the crucial molecular mediator of key endocrine, glucocorticoid hormone-dependent regulatory circuits, including control of glucose, protein, and lipid homeostasis. Consequently, aberrant glucocorticoid signaling is linked to severe metabolic disorders, including insulin resistance, obesity, and hyperglycemia, all of which also appear upon chronic glucocorticoid therapy for the treatment of inflammatory conditions. Of note, long-term glucocorticoid exposure under these therapeutic conditions typically induces glucocorticoid resistance, requiring higher doses and consequently triggering more severe metabolic phenotypes. However, the molecular basis of acquired glucocorticoid resistance remains unknown. In a screen of differential microRNA expression during glucocorticoid-dependent adipogenic differentiation of human multipotent adipose stem cells, we identified microRNA 29a (miR-29a) as one of the most down-regulated transcripts. Overexpression of miR-29a impaired adipogenesis. We found that miR-29a represses GR in human adipogenesis by directly targeting its mRNA, and downstream analyses revealed that GR mediates most of miR-29a's anti-adipogenic effects. Conversely, miR-29a expression depends on GR activation, creating a novel miR-29-driven feedback loop. miR-29a and GR expression were inversely correlated both in murine adipose tissue and in adipose tissue samples obtained from human patients. In the latter, miR-29a levels were additionally strongly negatively correlated with body mass index and adipocyte size. Importantly, inhibition of miR-29 in mice partially rescued the down-regulation of GR during dexamethasone treatment. We discovered that, in addition to modulating GR function under physiologic conditions, pharmacologic glucocorticoid application in inflammatory disease also induced miR-29a expression, correlating with reduced GR levels. This effect was abolished in mice with impaired GR function. In summary, we uncovered a novel GR-miR-29a negative feedback loop conserved between mice and humans, in health and disease. For the first time, we elucidate a microRNA-related mechanism that might contribute to GR dysregulation and resistance in peripheral tissues.-Glantschnig, C., Koenen, M., Gil-Lozano, M., Karbiener, M., Pickrahn, I., Williams-Dautovich, J., Patel, R., Cummins, C. L., Giroud, M., Hartleben, G., Vogl, E., Blüher, M., Tuckermann, J., Uhlenhaut, H., Herzig, S., Scheideler, M. A miR-29a-driven negative feedback loop regulates peripheral glucocorticoid receptor signaling.


Subject(s)
Adipocytes/cytology , Gene Expression Regulation , Glucocorticoids/metabolism , MicroRNAs/metabolism , Adipocytes/metabolism , Adipogenesis , Animals , Corticosterone/metabolism , Feedback, Physiological , Female , HEK293 Cells , Humans , Inflammation , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/surgery , Overweight/surgery , Phenotype , RNA, Small Interfering/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Stem Cells/cytology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL