Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335970

ABSTRACT

Quantum emitters in solid-state crystals have recently attracted a great deal of attention due to their simple applicability in optical quantum technologies. The polarization of single photons generated by quantum emitters is one of the key parameters that plays a crucial role in various applications, such as quantum computation, which uses the indistinguishability of photons. However, the degree of single-photon polarization is typically quantified using the time-averaged photoluminescence intensity of single emitters, which provides limited information about the dipole properties in solids. In this work, we use single defects in hexagonal boron nitride and nanodiamond as efficient room-temperature single-photon sources to reveal the origin and temporal evolution of the dipole orientation in solid-state quantum emitters. The angles of the excitation and emission dipoles relative to the crystal axes were determined experimentally and then calculated using density functional theory, which resulted in characteristic angles for every specific defect that can be used as an efficient tool for defect identification and understanding their atomic structure. Moreover, the temporal polarization dynamics revealed a strongly modified linear polarization visibility that depends on the excited-state decay time of the individual excitation. This effect can potentially be traced back to the excitation of excess charges in the local crystal environment. Understanding such hidden time-dependent mechanisms can further improve the performance of polarization-sensitive experiments, particularly that for quantum communication with single-photon emitters.

2.
J Phys Chem Lett ; 14(29): 6564-6571, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37458585

ABSTRACT

A solid-state quantum emitter is a crucial component for optical quantum technologies, ideally with a compatible wavelength for efficient coupling to other components in a quantum network. It is essential to understand fluorescent defects that lead to specific emitters. In this Letter, we employ density functional theory (DFT) to demonstrate the calculations of the complete optical fingerprints of quantum emitters in hexagonal boron nitride. Our results suggest that instead of comparing a single optical property, like the zero-phonon line energy, multiple properties should be used when comparing simulations to the experiment. Moreover, we apply this approach to predict the suitability of using the emitters in specific quantum applications. We therefore apply DFT calculations to identify quantum emitters with a lower risk of misassignments and a way to design optical quantum systems. Hence, we provide a recipe for classification and generation of universal quantum emitters in future hybrid quantum networks.

3.
Nat Phys ; 19(3): 351-357, 2023.
Article in English | MEDLINE | ID: mdl-36942094

ABSTRACT

Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.

4.
Small Methods ; 6(9): e2200300, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35957515

ABSTRACT

A simple, large area, and cost-effective soft lithographic method is presented for the patterned growth of high-quality 2D transition metal dichalcogenides (TMDs). Initially, a liquid precursor (Na2 MoO4 in an aqueous solution) is patterned on the growth substrate using the micromolding in capillaries technique. Subsequently, a chemical vapor deposition step is employed to convert the precursor patterns to monolayer, few layers, or bulk TMDs, depending on the precursor concentration. The grown patterns are characterized using optical microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and photoluminescence spectroscopy to reveal their morphological, chemical, and optical characteristics. Additionally, electronic and optoelectronic devices are realized using the patterned TMDs and tested for their applicability in field effect transistors and photodetectors. The photodetectors made of MoS2 line patterns show a very high responsivity of 7674 A W-1 and external quantum efficiency of 1.49 × 106 %. Furthermore, the multiple grain boundaries present in patterned TMDs enable the fabrication of memtransistor devices. The patterning technique presented here may be applied to many other TMDs and related heterostructures, potentially advancing the fabrication of TMDs-based device arrays.

5.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35889651

ABSTRACT

Optical quantum technologies promise to revolutionize today's information processing and sensors. Crucial to many quantum applications are efficient sources of pure single photons. For a quantum emitter to be used in such application, or for different quantum systems to be coupled to each other, the optical emission wavelength of the quantum emitter needs to be tailored. Here, we use density functional theory to calculate and manipulate the transition energy of fluorescent defects in the two-dimensional material hexagonal boron nitride. Our calculations feature the HSE06 functional which allows us to accurately predict the electronic band structures of 267 different defects. Moreover, using strain-tuning we can tailor the optical transition energy of suitable quantum emitters to match precisely that of quantum technology applications. We therefore not only provide a guide to make emitters for a specific application, but also have a promising pathway of tailoring quantum emitters that can couple to other solid-state qubit systems such as color centers in diamond.

6.
Light Sci Appl ; 9: 116, 2020.
Article in English | MEDLINE | ID: mdl-32655861

ABSTRACT

Long-range and fast transport of coherent excitons is important for the development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconductors when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the transport of excitons in their native states in materials. Here, by confining coherent excitons at the 2D quantum limit, we first observed molecular aggregation-enabled 'supertransport' of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured high effective exciton diffusion coefficient of ~346.9 cm2/s at room temperature. This value is one to several orders of magnitude higher than the values reported for other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (~1.2 nm thick) with high crystallinity (J-type aggregation) and minimal interfacial states, showed superradiant emission from Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalised over ~135 molecules, which is significantly larger than the values (a few molecules) observed for other organic thin films. In addition, the supertransport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other optoelectronic devices.

7.
Nanoscale ; 11(30): 14362-14371, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31332410

ABSTRACT

The recent discovery of single-photon emitting defects hosted by the two-dimensional wide band gap semiconductor hexagonal boron nitride (hBN) has inspired a great number of experiments. Key characteristics of these quantum emitters are their capability to operate at room temperature with a high luminosity. In spite of large theoretical and experimental research efforts, the exact nature of the emission remains unresolved. In this work we utilize layer-by-layer etching of multilayer hBN to localize the quantum emitters with atomic precision. Our results suggest the position of the emitters correlates with the fabrication method: emitters formed under plasma treatment are always in close proximity to the crystal surface, while emitters created under electron irradiation are distributed randomly throughout the entire crystal. This disparity could be traced back to the lower kinetic energy of the ions in the plasma compared to the kinetic energy of the electrons in the particle accelerator. The emitter distance to the surface also correlates with the excited state lifetime: near-surface emitters have a shorter one compared to emitters deep within the crystal. Finite-difference time-domain and density functional theory simulations show that optical and electronic effects are not responsible for this difference, indicating effects such as coupling to surface defects or phonons might cause the reduced lifetime. Our results pave a way toward identification of the defect, as well as engineering the emitter properties.

8.
Nat Commun ; 10(1): 1202, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867428

ABSTRACT

Characteristic for devices based on two-dimensional materials are their low size, weight and power requirements. This makes them advantageous for use in space instrumentation, including photovoltaics, batteries, electronics, sensors and light sources for long-distance quantum communication. Here we present a comprehensive study on combined radiation effects in Earth's atmosphere on various devices based on these nanomaterials. Using theoretical modeling packages, we estimate relevant radiation levels and then expose field-effect transistors, single-photon sources and monolayers as building blocks for future electronics to γ-rays, protons and electrons. The devices show negligible change in performance after the irradiation, suggesting robust suitability for space use. Under excessive γ-radiation, however, monolayer WS2 shows decreased defect densities, identified by an increase in photoluminescence, carrier lifetime and a change in doping ratio proportional to the photon flux. The underlying mechanism is traced back to radiation-induced defect healing, wherein dissociated oxygen passivates sulfur vacancies.

SELECTION OF CITATIONS
SEARCH DETAIL