Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 2): 150346, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34601177

ABSTRACT

South Africa has the highest number of people living with the human immunodeficiency virus (HIV). High usage of HIV-antiretroviral drugs (ARVs) for the treatment of the acquired immunodeficiency syndrome (AIDS) leads to the presence of ARVs in the environment. Wastewater is a major contributor of pharmaceuticals in surface and drinking water as wastewater treatment plants (WWTPs) are not designed to remove these compounds. Pharmaceuticals in the environment pose risks and the effects of ARVs on non-target organisms are largely unknown. The concentrations of ARVs in surface water upstream and downstream from WWTPs in rivers were determined. The samples were extracted by solid-phase extraction and analysed by using liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer. Five ARVs were quantified, mostly in downstream samples of the WWTPs, indicating wastewater as a source of ARVs, but this was not apparent in all cases. Nevirapine, lopinavir, and efavirenz were frequently detected; the highest concentrations being lopinavir and efavirenz at 38 µg/L and 24 µg/L, respectively. Aquatic ecosystems are at risk due to the constant input of pharmaceuticals that include large amounts of everyday use and the release of ARVs. This study highlights the potential of increased water pollution worldwide should more people consume increased quantities of pharmaceuticals.


Subject(s)
HIV Infections , Pharmaceutical Preparations , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , South Africa , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 274: 129718, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33529952

ABSTRACT

South African surface waters are subject to various forms of pollution. Recent findings in aquatic systems suggest an association exists between yeast diversity, chemical pollutants and land coverage, which are important water quality determinants. Yeast abundance and diversity, as well as antifungal agents in two river systems in South Africa, were investigated and related to the existing land coverage. Yeast abundance and diversity were determined from environmental DNA by quantitative polymerase chain reaction and next-generation sequencing, respectively, of the 26S ribosomal ribonucleic acid (rRNA) gene. Antifungal agents were qualitatively and/or quantitatively detected by ultra-high-pressure liquid chromatography-mass spectrometry. Analyses of 2 031 714 high-quality 26S rRNA sequences yielded 5554 amplicon sequence variants (ASVs)/species. ASV richness and Shannon-Wiener index of diversity reflected the southward flow of the river with higher values observed downstream compared to the upstream. Fluconazole concentrations were quantifiable in only two samples; 178 and 271 ng L-1. Taxonomically, at least 20 yeast species were detected, including the dominant Candida tropicalis, Cryptococcus spp. as well as the lesser dominant Bensingtonia bomiensis, Fereydounia khargensis, Hericium erinaceus, Kondoa changbaiensi, Pseudozyma spp. and Sphacelotheca pamparum. The two dominant species are known opportunistic pathogens which had antifungal resistant traits in previous studies from the same rivers and therefore is a public health threat. The present study provides further evidence that yeasts should be included as part of water quality parameters, especially in developing countries where much of the population are economically disadvantaged, and also immunocompromised due to age and disease.


Subject(s)
Antifungal Agents , Antifungal Agents/toxicity , Basidiomycota , South Africa
3.
Mar Pollut Bull ; 138: 49-57, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30660298

ABSTRACT

The toxic equivalences (TEQs) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from sediment of aquatic systems in Durban, South Africa were determined in two ways: 1) TEQs of PAHs and PCBs were determined by instrumental analyses and converted to 2,3,7,8­tetrachlorodibenzo­para­dioxin equivalence (TCDDeq). 2) Bioassay equivalences (BEQs) of aryl hydrocarbon receptor (AhR) ligands were analysed using the H4IIE-luc bioassay. TEQs of PCBs ranged from below limit of detection (

Subject(s)
Geologic Sediments/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Cell Line , Ecotoxicology/methods , Limit of Detection , Polychlorinated Biphenyls/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Rats , Receptors, Aryl Hydrocarbon/metabolism , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...