Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38399772

ABSTRACT

Rural households all over the world rear backyard chicken mainly for their own consumption and, to a lesser extent, for barter trade. These chickens represent a staple dish with numerous culinary variations and a cheap source of protein. Although some Campylobacter species, and particularly Campylobacter jejuni and Campylobacter coli, have been associated with industrial poultry carcasses, studies concerning the ecology of this genus in rural households do not exist. To assess the prevalence of Campylobacter species in the tissues of backyard chickens, samples were collected from birds Gallus domesticus bred in households in the rural area of Epirus (Greece), and Campylobacter strains were isolated by quantitative methods at 37 °C and 42 °C. In total, 256 strains were identified, belonging to 17 Campylobacter species, with C. jejuni and C. coli being the most prevalent. From the four ecological parameters studied (size of the flock, presence of small ruminants in the same household, presence of other poultry species in the same household, and feeding leftovers of the household), the size of the flock and the presence of small ruminants and/or pigs in the same household mostly affected the distribution of these strains. To study the phenotypical resistance against 14 antibiotics, 215 strains were selected. The results showed a high prevalence of multidrug-resistance (MDR) strains extending to all classes of antibiotics. Further genome analysis revealed the presence of genes coding resistance (blaOxA-61, tet(O), tet(A) cmeA, cmeB, cmeC, and gyrA (Thr-86-Ile mutation)), with the efflux pump CmeABC being the most prevalent. All antimicrobial resistance-encoded genes co-circulated, except for blaOXA-61, which moved independently. The minimum inhibitory concentration (MIC) values of two out of three antibiotics (representing different classes) were reduced when the strains tested were exposed to carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a known efflux pump inhibitor. The same result was obtained with the addition of CCCP to the MIC values of bile salts. These results lead to the conclusion that Campylobacter species are present in an impressive diversity in backyard chicken tissues and that they exert a significant resistance to antibiotics, raising a potential danger for public health.

2.
Vet Sci ; 11(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38393091

ABSTRACT

Nowadays, the global animal industry faces considerable challenges in securing sufficient feed resources. Responding to consumer demands for reduced use of antibiotics in animal nutrition, better animal welfare status, and reduced impact on the environment, there is an increased urgency to develop innovative functional feeds with a reduced environmental footprint and the ability to improve meat quality and safety. In an effort to explore innovative feed ingredients for growing pig diets, the combined dietary supplementation of Tenebrio molitor larvae and chitosan was investigated. An experimental trial was performed with 48 weaned pigs (34 days of life; mixed sex) that were randomly assigned to four treatment groups (with six males and six females each): Group A (control), Group B (supplemented with T. molitor larvae at 10%), Group C (supplemented with chitosan at 0.05%), and Group D (supplemented with both ingredients at 10% and 0.05%, respectively). On the 42nd day of the experimental trial, samples of blood, feces, and carcass parts were taken for analysis. The results indicated that the insect larvae meal significantly improved (p < 0.05) overall performance, increased (p < 0.05) blood red blood cell content, increased meat phenolic content (p < 0.05), improved meat oxidative stability (p < 0.05), and affected meat fatty acid profile (p < 0.05). On the other hand, chitosan had no significant effect on overall performance (p > 0.05), but it significantly increased blood lymphocyte content (p < 0.05), affected the fecal microbiota (p < 0.05), improved meat oxidative stability (p < 0.05), increased meat phenolic content (p < 0.05), and affected meat fatty acid composition (p < 0.05) and (p < 0.05) meat color. Finally, the combined use of both T. molitor and chitosan significantly affected some important zootechnical parameters (p < 0.05), fecal microbial populations (p < 0.05), meat color (p < 0.05), and fatty acid profile (p < 0.05). Further investigation into the potential interaction between insect larvae meals and chitosan in pig diets is advised.

3.
Biology (Basel) ; 12(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37759587

ABSTRACT

Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.

4.
J Funct Biomater ; 14(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37754895

ABSTRACT

Herbal extracts have been used in traditional remedies since the earliest myths. They have excellent antimicrobial, anti-inflammatory, and antioxidant activities owing to various bioactive components in their structure. However, due to their inability to reach a target and low biostability, their use with a delivery vehicle has come into prominence. For this purpose, electrospun nanofibrous scaffolds have been widely preferred for the delivery and release of antimicrobial herbal extracts due to the flexibility and operational versatility of the electrospinning technique. Herein, we briefly reviewed the electrospun nanofibrous scaffolds as delivery systems for herbal extracts with a particular focus on the preclinical studies for wound-healing applications that have been published in the last five years. We also discussed the indirect effects of herbal extracts on wound healing by altering the characteristics of electrospun mats.

5.
Nutrients ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447285

ABSTRACT

The immune system is vital for safeguarding the human body against infections and inflammatory diseases. The role of diet and meal patterns in modulating immune function is complex, and highlighting this topic is crucial for identifying potential ways to improve immune health. In Europe, the Mediterranean diet and Western diet are the most common dietary patterns, and gaining an understanding of how they affect immune function is essential for public health. There are numerous inflammatory diseases that are observed in younger and older people. Some of the common diseases include polymyalgia rheumatica (PMR), spinal muscular atrophy (SMA), vasculitis, sarcopenia, cirrhosis, cancer, and fibromyalgia, but the main focus in this review article is on irritable bowel disease (IBD). In general, dietary choices can have an immense impact on the microbial flora of the gut in people with inflammatory diseases. The intake of Mediterranean-style foods promotes the growth of healthy bacteria that enhances the function of the immune system. On the other hand, it is mostly seen that the intake of Western-style foods leads to the growth of harmful gut bacteria that contributes to inflammation and disease development by weakening the immune system. Additionally, inflammation in the gut can impact brain function, leading to mood disorders, such as anxiety and depression. Rare inflammatory diseases, such as psoriasis and sarcoidosis, are of main interest in this article. All the above-mentioned common and rare inflammatory diseases have a certain relationship with the microbiota of the gut. The gut microbiome plays a significant role in IBD; fiber and prebiotic interventions may represent promising adjunct therapies for pediatric IBD by targeting the gut microbiome. By advancing a good overall arrangement of microorganisms in the stomach through dietary mediations, working on the side effects and alleviating of diseases might be conceivable. The gut microbiota can be affected differently by various dietary fatty acid types. There is also an involvement of genetics in the progression of IBD, such as transcriptional factors, and one gene of interest is the LCT gene, which encodes for lactase, an enzyme responsible for digesting lactose in the gut.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Irritable Bowel Syndrome , Humans , Child , Aged , Inflammation , Bacteria
6.
Vet Sci ; 10(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37368779

ABSTRACT

The procurement of adequate feed resources is one of the most important challenges for the animal industry worldwide. While the need for feeds rich in protein is constantly increasing, their production cannot readily keep up. Consequently, to overcome this challenge in a sustainable way, it is necessary to identify and develop new feeding strategies and feed ingredients, such as insect meals. In the present study, Tenebrio molitor larvae that were reared on two different substrates (standard and enriched with medicinal aromatic plant material) were used as feed ingredients for growing pigs. A total of 36 weaned pigs (34 days old) were randomly allocated to three treatment groups and fed either the control diet (A) or diets supplemented at 10% with one of the two insect meals (B and C). At the end of the trial (42 days), blood, feces, and meat samples were collected for analysis. The insect meal supplementation did not affect (p > 0.05) overall performance but significantly modified (p < 0.001) the fecal microflora balance and the blood cholesterol (p < 0.001), while the rest of the blood parameters tested were not affected. Moreover, this dietary supplementation significantly affected some microbial populations (p < 0.001), improved the total phenolic content (p < 0.05), and the fatty acid profile (p < 0.001) of the meat cuts, but did not affect (p > 0.05) meat color or proximate composition. Further research is needed to evaluate the different types and levels of inclusion of insect meals in pig nutrition.

7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175516

ABSTRACT

Biomaterial-based therapies have been receiving attention for treating microbial infections mainly to overcome the increasing number of drug-resistant bacterial strains and off-target impacts of therapeutic agents by conventional strategies. A fibrous, non-soluble protein, collagen, is one of the most studied biopolymers for the development of antimicrobial biomaterials owing to its superior physicochemical, biomechanical, and biological properties. In this study, we reviewed the different approaches used to develop collagen-based antimicrobial devices, such as non-pharmacological, antibiotic, metal oxide, antimicrobial peptide, herbal extract-based, and combination approaches, with a particular focus on preclinical studies that have been published in the last decade.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Biocompatible Materials/chemistry , Tissue Engineering , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Collagen , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
8.
Antibiotics (Basel) ; 12(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36830295

ABSTRACT

The increase in antimicrobial resistance and tolerance over the years has become a serious public health problem, leading to the inevitable development of alternative antimicrobial agents as substitutes for industrial pharmaceutical antibiotics targeting humans and animals under the concept of one health. Essential oils (EOs) extracted from aromatic and pharmaceutical plants incorporate several bioactive compounds (phytochemicals) that positively affect human and animal health. Herein, this work aimed to examine a standardized chemical composition and screen the antimicrobial and anti-biofilm activity of Thymus sibthorpii, Origanum vulgare, Salvia fruticosa, and Crithmum maritimum EOs against three different Staphylococcus aureus strains by gold-standard disc diffusion, broth microdilution, and microtiter plate biofilm assays. Therefore, the evaluation of the above-mentioned EOs were considered as substitutes for antibiotics to combat the ever-mounting antimicrobial resistance problem. The observed bacterial growth inhibition varied significantly depending on the type and concentration of the antimicrobials. Thymus sibthorpii was determined as the strongest antimicrobial, with 0.091 mg/mL minimum inhibitory concentration (MIC) and a 14-33 mm diameter inhibition zone at 5% (v/v) concentration. All tested EOs indicated almost 95% inhibition of biofilm formation at their half MIC, while gentamicin sulfate did not show sufficient anti-biofilm activity. None of the methicillin-resistant strains showed resistance to the EOs compared to methicillin-sensitive strains. Thymus sibthorpii and Origanum vulgare could be potential alternatives as antimicrobial agents to overcome the problem of microbial resistance. The tested EOs might be incorporated into antimicrobial products as safe and potent antimicrobial and anti-biofilm agents.

9.
Biomedicines ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831029

ABSTRACT

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract affecting millions of patients worldwide. The gut microbiome partly determines the pathogenesis of both diseases. Even though probiotics have been widely used as a potential treatment, their efficacy in inducing and maintaining remission is still controversial. Our study aims to review the present-day literature about the possible role of probiotics in treating inflammatory bowel diseases in adults. This research was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. We included studies concerning adult patients who compared probiotics with placebo or non-probiotic intervention. We identified thirty-three studies, including 2713 patients from fourteen countries. The role of probiotics in Crohn's disease was examined in eleven studies. Only four studies presented statistically significant results in the remission of disease, primarily when used for three to six months. On the other hand, in twenty-one out of twenty-five studies, probiotics proved effective in achieving or maintaining remission in ulcerative colitis. Supplementation with Bifidobacterium sp. or a combination of probiotics is the most effective intervention, especially when compared with a placebo. There is strong evidence supporting the usage of probiotic supplementation in patients with ulcerative colitis, yet more research is needed to justify their efficacy in Crohn's disease.

10.
Antioxidants (Basel) ; 12(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36829972

ABSTRACT

Research attention has been drawn to honey's nutritional status and beneficial properties for human health. This study aimed to provide a bibliometric analysis of honey's antioxidant and antimicrobial properties. The research advancements within this field from 2001 to 2022 were addressed using the Scopus database, R, and VOSviewer. Of the 383 results, articles (273) and reviews (81) were the most common document types, while the annual growth rate of published manuscripts reached 17.5%. The most relevant topics about honey's antimicrobial and antioxidant properties were related to the agricultural and biological sciences, biochemistry, and pharmacology. According to a keyword analysis, the most frequent terms in titles, abstracts, and keywords were honey, antimicrobial, antioxidant, bee, propolis, phenolic compounds, wound, antibacterial, anti-inflammatory, and polyphenols. A trend topic analysis showed that the research agenda mainly encompassed antioxidants, pathogens, and anti-infection and chemical agents. In a co-occurrence analysis, antioxidants, anti-infection agents, and chemistry were connected to honey research. The initial research focus of this domain was primarily on honey's anti-inflammatory and antineoplastic activity, wound healing, and antibacterial agents. The research agenda was enriched in the subsequent years by pathogens, propolis, oxidative stress, and flavonoids. It was possible to pinpoint past trends and ongoing developments and provide a valuable insight into the field of honey research.

11.
Antibiotics (Basel) ; 12(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671302

ABSTRACT

Honey's antibacterial activity has been recently linked to the inhibitory effects of honey microbiota against a range of foodborne and human pathogens. In the current study, the microbial community structure of honey samples exerting pronounced antimicrobial activity was examined. The honey samples were obtained from different geographical locations in Greece and had diverse pollen origin (fir, cotton, fir-oak, and Arbutus unedo honeys). Identification of honey microbiota was performed by high-throughput amplicon sequencing analysis, detecting 335 distinct taxa in the analyzed samples. Regarding ecological indices, the fir and cotton honeys possessed greater diversity than the fir-oak and Arbutus unedo ones. Lactobacillus kunkeei (basionym of Apilactobacillus kun-keei) was the predominant taxon in the fir honey examined. Lactobacillus spp. appeared to be favored in honey from fir-originated pollen and nectar since lactobacilli were more pronounced in fir compared to fir-oak honey. Pseudomonas, Streptococcus, Lysobacter and Meiothermus were the predominant taxa in cotton honey, whereas Lonsdalea, the causing agent of acute oak decline, and Zymobacter, an osmotolerant facultative anaerobic fermenter, were the dominant taxa in fir-oak honey. Moreover, methylotrophic bacteria represented 1.3-3% of the total relative abundance, independently of the geographical and pollen origin, indicating that methylotrophy plays an important role in honeybee ecology and functionality. A total of 14 taxa were identified in all examined honey samples, including bacilli/anoxybacilli, paracocci, lysobacters, pseudomonads, and sphingomonads. It is concluded that microbial constituents of the honey samples examined were native gut microbiota of melliferous bees and microbiota of their flowering plants, including both beneficial bacteria, such as potential probiotic strains, and animal and plant pathogens, e.g., Staphylococcus spp. and Lonsdalea spp. Further experimentation will elucidate aspects of potential application of microbial bioindicators in identifying the authenticity of honey and honeybee-derived products.

12.
Microorganisms ; 11(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36677415

ABSTRACT

The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes' authenticity and cheese quality.

13.
Microorganisms ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38257885

ABSTRACT

The rising demand for novel antibiotic agents prompts an investigation into natural resources, notably plant-derived compounds. In this study, various extracts (aqueous, ethanolic, aqueous-ethanolic, and enzymatic) of Rosa damascena and Hypericum perforatum were systematically evaluated against bacterial strains isolated from dental lesions (n = 6) and food sources (raw milk and broiler carcass, n = 2). Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antibiofilm activity, and time-kill kinetics were assessed across a range of extract concentrations, revealing a dose-responsive effect. Notably, some extracts exhibited superior antibacterial efficacy compared to standard clinical antibiotics, and the time-kill kinetics demonstrated a rapid elimination of bacterial loads within 24 h. The susceptibility pattern proved strain-specific, contingent upon the extract type, yet all tested pathogens exhibited sensitivity. The identified extracts, rich in phenolic and polyphenolic compounds, as well as other antioxidant properties, contributed to their remarkable antibiotic effects. This comprehensive investigation not only highlights the potential of Rosa damascena and Hypericum perforatum extracts as potent antibacterial agents against diverse bacterial strains including caries pathogens, but also underscores their rapid action and dose-dependent efficacy. The findings suggest a promising avenue for harnessing plant-derived compounds in the development of novel antimicrobial strategies against dental caries and other oral inflammations, bridging the gap between natural resources and antibiotic discovery.

14.
Foods ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36429328

ABSTRACT

The demand for ovine milk and ovine dairy products is constantly increasing due to their exceptional sensorial characteristics and their health benefits for consumers. However, dairy fat content and composition are of particular concern for consumers as well as the medical community, as there are risk factors for coronary disease, diabetes mellitus, cancer, and other serious diseases. For this reason, attempts have been made to control/regulate the fat composition of ovine milk by modifying sheep dietary intake of polyunsaturated fatty acids. In this experimental trial, a group of sheep were fed for 30 days a diet enriched in flaxseeds and lupines, feed ingredients rich in omega-3 fatty acids, aiming to investigate the effects on fat composition and the microbiota of ovine milk. Chemical analysis of the collected milk showed that the omega-3 and omega-6 content was increased. On the opposite, the atherogenic and thrombogenic indexes decreased. Of importance was the semi-protective effect on the udder by the increased omega-3 dietary intake, as depicted by its impact on the biodiversity of the pathogenic microbiota. These findings suggest that ovine milk could be modified under specific conditions to be more appropriate for the consumption by people belonging to high-risk groups for various diseases.

15.
Biology (Basel) ; 11(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36358292

ABSTRACT

Staphylococcus spp. is an important mastitis-inducing zoonotic pathogen in goats and is associated with antimicrobial resistance (AMR). The objectives of this study were to determine the prevalence and composition of staphylococci in individual mammary secretion (MS) samples of clinically healthy goats and to evaluate the phenotypic AMR pattern and the presence of methicillin resistance in the Staphylococcus spp. strains. Staphylococcus spp. isolates (n = 101) from the MS samples (n = 220) were identified to species level using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The antimicrobial susceptibility testing included a disk diffusion assay and the determination of the minimum inhibitory concentrations (MIC) of resistant strains (n = 46). Presumptive methicillin-resistant strains (n = 9) were assessed for the presence of mecA, mecC and SCCmec/orfx genes. Staphylococcus spp. isolates were recovered from 45.9% of the MS samples, of which, 72.3% was identified as coagulase-negative staphylococci (CoNS), with the remaining being Staphylococcus aureus. CoNS and S. aureus were most commonly resistant to ampicillin (56.2% and 57.1%, respectively), penicillin (26.0% and 39.3%, respectively), amoxicillin (26 % and 25 %, respectively) and cephalexin (12.3% and 25%, respectively) in the disk diffusion method. CoNS exhibited a broader AMR pattern and a higher percentage of resistant strains than S. aureus in the disk diffusion and MIC methods. Of the nine oxacillin- and cefoxitin-resistant strains, three S. aureus and five CoNS strains carried the mecA gene and, thus, were identified as methicillin-resistant. The mecC gene was not found in any of the studied strains. The presence of AMR and methicillin resistance in caprine S. aureus and CoNS poses a concern for animal and public health.

16.
Antibiotics (Basel) ; 11(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36009883

ABSTRACT

It is accepted that the medicinal use of complex mixtures of plant-derived bioactive compounds is more effective than purified bioactive compounds due to beneficial combination interactions. However, synergy and antagonism are very difficult to study in a meticulous fashion since most established methods were designed to reduce the complexity of mixtures and identify single bioactive compounds. This study represents a critical review of the current scientific literature on the combined effects of plant-derived extracts/bioactive compounds. A particular emphasis is provided on the identification of antimicrobial synergistic or antagonistic combinations using recent metabolomics methods and elucidation of approaches identifying potential mechanisms that underlie their interactions. Proven examples of synergistic/antagonistic antimicrobial activity of bioactive compounds are also discussed. The focus is also put on the current challenges, difficulties, and problems that need to be overcome and future perspectives surrounding combination effects. The utilization of bioactive compounds from medicinal plant extracts as appropriate antimicrobials is important and needs to be facilitated by means of new metabolomics technologies to discover the most effective combinations among them. Understanding the nature of the interactions between medicinal plant-derived bioactive compounds will result in the development of new combination antimicrobial therapies.

17.
Antibiotics (Basel) ; 11(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35326885

ABSTRACT

The development of antibiotic resistance is a major public health issue, as infections are increasingly unresponsive to antibiotics. Emerging antimicrobial resistance has raised researchers' interest in the development of alternative strategies using natural compounds with antibacterial activity, like honey, which has emerged as an agent to treat several infections and wound injuries. Nevertheless, the antibacterial effect of honey was mostly evaluated against Gram-positive bacteria. Hence, the objective of our study was to evaluate the antibacterial activity, as well as the physicochemical parameters, of genuine Greek honeys against multidrug-resistant Gram-negative pathogenic bacteria. In this vein, we aimed to study the in vitro antibacterial potential of rare Greek honeys against Verona integron-encoded metallo-ß-lactamase (VIM)- or Klebsiella pneumoniae carbapenemase-producing multidrug-resistant Gram-negative pathogens. Physicochemical parameters such as pH, hydrogen peroxide, free acidity, lactonic acid, total phenols total flavonoids, free radical scavenging activities, tyrosinase enzyme inhibitory activity and kojic acid were examined. Moreover, the antimicrobial activity of 10 different honey types was evaluated in five consecutive dilutions (75%, 50%, 25%, 12.5% and 6.25%) against the clinical isolates by the well diffusion method, as well as by the determination of the minimum inhibition concentration after the addition of catalase and protease. Almost all the physicochemical parameters varied significantly among the different honeys. Fir and manuka honey showed the highest values in pH and H2O2, while the free acidity and lactonic acid levels were higher in chestnut honey. Total phenols, total flavonoids and free radical scavenging activities were found higher in cotton, arbutus and manuka honey, and finally, manuka and oregano honeys showed higher tyrosinase inhibition activity and kojic acid levels. The antimicrobial susceptibility depended on the type of honey, on its dilution, on the treatment methodology and on the microorganism. Arbutus honey was the most potent against VIM-producing Enterobacter cloacae subsp. dissolvens in 75% concentration, while fir honey was more lethal for the same microorganism in the 25% concentration. Many honeys outperformed manuka honey in their antibacterial potency. It is of interest that, for any given concentration in the well diffusion method and for any given type of honey, significant differences were not detected among the four multidrug-resistant pathogens, which explains that the damaging effect to the bacterial cells was the same regardless of the bacterial species or strain. Although the antimicrobial potency of different honey varieties dependents on their geographical origin and on their compositional differences, the exact underlying mechanism remains yet unclear.

18.
Foods ; 11(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35327266

ABSTRACT

Kefalograviera is a well-known hard Greek cheese. The aim of this study was to determine how milk produced from ewes fed omega-3-enriched diets could influence the microbiota as well as the chemical composition of Kefalograviera cheese. At the start of the trial, 30 dairy ewes (Lesvos and Chios crossbreed) were selected and fed a conventional diet, based on alfalfa hay, straw and concentrate feed that contained soybean meal for a period of thirty days. Then, for a period of sixty days the same ewes were fed an omega-3-enriched concentrate feed with a lower level of soybean meal that contained 10% flaxseed and 10% lupins. Milk yield was collected individually on Days 30, 60 and 90 and used to produce three different batches of Kefalograviera cheeses, at the same cheese factory, by using a traditional recipe and identical preparation conditions (pasteurization of milk, salt, rennet and culture). Sample analysis was done after six months of Kefalograviera cheese ripening. MALDI-TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) identification was performed by contrasting the samples' mass spectra with the corresponding reference database. The correlation between the different Kefalograviera cheeses revealed the predominant species being Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus paracasei, Enterococcus faecium and Enterococcus faecalis, with significant quantitative differences between the experimental groups and the controls. Pediococcus spp. was isolated only from the experimental groups' cheeses and Staphylococcus spp. only from the controls' cheese, suggesting-among other differences-a bacterial microbiota distinction between the groups. Moreover, increased levels of alpha-linolenic acid and total polyunsaturated omega-3 fatty acids were noted in the enriched Kefalograviera cheeses. These promising findings suggest that enriched Kefalograviera cheese could be manufactured via enriching the ewes' diets, with potential benefits for the consumers' health.

19.
Foods ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34359441

ABSTRACT

Oregano honey is an exceedingly rare and distinct product, not commercially available, produced by bees bred in oregano fields of alpine altitudes at the mountainous area of Epirus, Greece. In ethnic popular medicine, this product is used as a therapeutic in various gastric diseases. To test this hypothesis, 14 strains of Helicobacter pylori (H. pylori), 6 isolated from gastric ulcers and 8 from cases of clinical gastritis, were employed in the present study. The above bacterial strains were exposed to various concentrations (75% v/v, 50% v/v, 25% v/v, 12.5% v/v, and 6% v/v) of 50 oregano honey samples by using the agar well method and the inhibition zones observed around each well were recorded. Although the inhibitory zones of the H. pylori isolated from the gastric ulcers were wide enough (0-34 mm), those strains, in general, appeared more resistant than the other eight (0-58 mm). The same result was observed when the same strains were tested against six antibiotics used in clinical practice. Extracts of oregano honey were prepared by extraction with four different organic solvents. N-hexane and chloroform extracts had the most potent antibacterial action. Finally, pure oregano honey and diethyl ether extracts of honey showed significant inhibitory activity against urease secreted by the pathogen. These results strongly indicate the susceptibility of H. pylori strains to the oregano honey by more than one mode of action. Consequently, this variety of honey seems to have potential therapeutic properties against gastric ulcers and gastritis, thus explaining the preference of the locals towards this traditional remedy.

SELECTION OF CITATIONS
SEARCH DETAIL
...