Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37627481

ABSTRACT

The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.

2.
Gen Comp Endocrinol ; 341: 114334, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37302764

ABSTRACT

Kisspeptin, a product of the Kiss1 gene is considered a potent stimulator of gonadotropin release, by interacting with its receptor, the G protein-coupled receptor 54. Kiss1 neurons are known to mediate the positive and negative feedback effects of oestradiol on GnRH neurons that control the pulsatile and surge secretion of GnRH. While in spontaneously ovulating mammals the GnRH/LH surge is initiated by a rise in ovarian oestradiol secreted from maturing follicles, in induced ovulators, the primary trigger is the mating stimulus. Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean rodents that exhibit induced ovulation. We have previously described in this species the distribution and differential expression pattern of Kiss1-expressing neurons in the hypothalamus of males and females. Here we examine whether oestradiol (E2) regulates the hypothalamic Kiss1 expression in a similar way as described for spontaneously ovulating rodent species. By means of in situ hybridisation, we measured Kiss1 mRNA among groups of ovary-intact, ovariectomized (OVX) and OVX females treated with E2 (OVX + E2). In the arcuate nucleus (ARC), Kiss1 expression increased after ovariectomy and decreased with E2 treatment. In the preoptic region, Kiss1 expression after gonadectomy was similar to the level of wild-caught gonad-intact controls, but was dramatically upregulated with E2 treatment. The data suggest that, similar to other species, Kiss1 neurons in the ARC, which are inhibited by E2, play a role in the negative feedback control on GnRH release. The exact role of the Kiss1 neuron population in the preoptic region, which is stimulated by E2, remains to be determined.


Subject(s)
Estradiol , Kisspeptins , Male , Animals , Female , Estradiol/pharmacology , Estradiol/metabolism , Kisspeptins/metabolism , Mole Rats/metabolism , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gene Expression , Gene Expression Regulation
3.
Immunity ; 56(1): 143-161.e11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630913

ABSTRACT

Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.


Subject(s)
Interleukins , Neoplasms , Receptors, Virus , T-Lymphocytes, Helper-Inducer , Animals , Humans , Mice , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukins/genetics , Interleukins/metabolism , Killer Cells, Natural/metabolism , Neoplasms/metabolism , Protein Binding , T-Lymphocytes, Helper-Inducer/metabolism , Interleukin-22
4.
Animals (Basel) ; 12(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359164

ABSTRACT

The naked mole-rat (Heterocephalus glaber) and the Damaraland mole-rat (Fukomys damarensis) possess extreme reproductive skew with a single reproductive female responsible for reproduction. In this review, we synthesize advances made into African mole-rat reproductive patterns and physiology within the context of the social control of reproduction. Non-reproductive female colony members have low concentrations of luteinising hormone (LH) and a reduced response of the pituitary to a challenge with gonadotropin releasing hormone (GnRH). If the reproductive female is removed from the colony, an increase in the basal plasma LH and increased pituitary response to a GnRH challenge arises in the non-reproductive females, suggesting the reproductive female controls reproduction. Non-reproductive male Damaraland mole-rats have basal LH concentrations and elevated LH concentrations in response to a GnRH challenge comparable to the breeding male, but in non-breeding male naked mole-rats, the basal LH concentrations are low and there is a muted response to a GnRH challenge. This renders these two species ideal models to investigate physiological, behavioural and neuroendocrine mechanisms regulating the hypothalamic-pituitary-gonadal axis. The recently discovered neuropeptides kisspeptin and RFamide-related peptide-3 are likely candidates to play an important role in the regulation of reproductive functions in the two mole-rat species.

6.
Am J Med Genet C Semin Med Genet ; 190(3): 279-288, 2022 09.
Article in English | MEDLINE | ID: mdl-35923129

ABSTRACT

Kidney stone disease (KSD) is a prevalent condition associated with high morbidity, frequent recurrence, and progression to chronic kidney disease (CKD). The etiology is multifactorial, depending on environmental and genetic factors. Although monogenic KSD is frequent in children, unbiased prevalence data of heritable forms in adults is scarce. Within 2 years of recruitment, all patients hospitalized for urological kidney stone intervention at our center were consecutively enrolled for targeted next generation sequencing (tNGS). Additionally, clinical and metabolic assessments were performed for genotype-phenotype analyses. The cohort comprised 155 (66%) males and 81 (34%) females, with a mean age at first stone of 47 years (4-86). The diagnostic yield of tNGS was 6.8% (16/236), with cystinuria (SLC3A1, SLC7A9), distal renal tubular acidosis (SLC4A1), and renal phosphate wasting (SLC34A1, SLC9A3R1) as underlying hereditary disorders. While metabolic syndrome traits were associated with late-onset KSD, hereditary KSD was associated with increased disease severity in terms of early-onset, frequent recurrence, mildly impaired kidney function, and common bilateral affection. By employing systematic genetic analysis to a less biased cohort of common adult kidney stone formers, we demonstrate its diagnostic value for establishing the underlying disorder in a distinct proportion. Factors determining pretest probability include age at first stone (<40 years), frequent recurrence, mild CKD, and bilateral KSD.


Subject(s)
Kidney Calculi , Renal Insufficiency, Chronic , Male , Female , Humans , Kidney Calculi/genetics , Kidney Calculi/diagnosis , Genetic Testing , Phenotype , Probability
7.
J Chem Neuroanat ; 118: 102039, 2021 12.
Article in English | MEDLINE | ID: mdl-34655735

ABSTRACT

Damaraland mole-rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals, which exhibit high reproductive skew. Reproduction is monopolized by the dominant female of the group, while subordinates are anovulatory. Similarly, male subordinates within the colony show no sexual behaviour although they have functional gonads and do not differ from reproductive males in circulating levels of pituitary hormones and testosterone. However, reproductive status affects the neuroendocrine phenotype of males with breeders possessing increased mRNA expression of androgen and progesterone receptors compared to non-breeders in several forebrain regions implicated in the regulation of reproductive behaviour. The RFamide peptides kisspeptin and RFRP-3, encoded by the Kiss1 and Rfrp gene, are considered potent regulators of gonadotropin release. In females, reproductive inhibition is associated with reduced Kiss1 expression within the arcuate nucleus (ARC) and increased Rfrp expression in the anterior hypothalamus. To assess whether differential gene expression of Kiss1 and Rfrp underlies the difference in reproductive behaviour of males, we studied the expression of both genes by means of in situ hybridisation in wild-caught male Damaraland mole-rats with different reproductive status. The distribution of Kiss1 and Rfrp within the hypothalamus was found to be similar to females. Quantification of the Kiss1 hybridisation signal revealed no significant differences in relation to reproductive status. However, there was a significant positive correlation between testis mass and the number of Kiss1-expressing cells in the ARC and the mRNA content per cell, respectively. Analysis of the Rfrp hybridisation signal along the rostro-caudal extent of the hypothalamus revealed that non-reproductive males possessed an increased number of Rfrp-expressing cells at the level of the dorsomedial hypothalamic nucleus (DMH) than reproductive males. These data suggest the Kiss1 expression within the ARC is not associated with reproductive quiescence in subordinate males but instead, inhibitory effects may be mediated by Rfrp-expressing cells in the DMH.


Subject(s)
Kisspeptins/genetics , Neuropeptides/genetics , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Gene Expression Regulation/genetics , Hypothalamus, Anterior/metabolism , Kisspeptins/biosynthesis , Male , Mole Rats , Neuropeptides/biosynthesis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Reproduction/genetics , Reproduction/physiology , Sexual Behavior, Animal/physiology , Social Dominance
8.
J Chem Neuroanat ; 102: 101705, 2019 12.
Article in English | MEDLINE | ID: mdl-31669432

ABSTRACT

Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals, which exhibit high reproductive skew. Reproduction is monopolized by the dominant female of the group, while subordinates are physiologically suppressed. The blockade of reproduction results from an inhibition of ovulation, which is caused by inadequate secretion of luteinizing hormone (LH) from the pituitary, which in turn might be brought about by a disruption of the normal GnRH secretion from the hypothalamus. The neuropeptides dynorphin and neurokinin B are expressed together with kisspeptin in a subpopulation of neurons in the arcuate nucleus (ARC). This neuron population is termed KNDy neurons and is considered to constitute the GnRH pulse generator. To assess whether dynorphin (encoded by the Pdyn gene) and neurokinin B (NKB, encoded by the Tac3 gene) are involved in the mechanism of reproductive suppression we investigated the distribution and gene expression of Pdyn and Tac3 by means of in situ hybridisation in wild-caught female Damaraland mole-rats with different reproductive status. In both reproductive phenotypes, substantial Pdyn expression was found in several brain regions of the telencephalon including the cerebral cortex, the striatum, the hippocampus, the amygdala and the olfactory tubercle. Within the hypothalamus Pdyn expression occurred in the paraventricular nucleus, the dorsomedial nucleus, the supraoptic nucleus, the ventromedial nucleus and the ARC. Prominent Tac3 expression was found in the habenula, the bed nucleus of the stria terminalis, the cerebral cortex, the striatum, the hippocampus, the amygdala, the dorsomedial nucleus, the ARC and the lateral mammillary nucleus. Quantification of the gene expression levels in the ARC revealed decreased Pdyn and increased Tac3 expression in breeding compared to nonbreeding females. This suggests that both neuropeptides play a role in the regulation of reproduction in Damaraland mole-rats. Their exact role in mediating the inhibition of GnRH release in nonbreeding females remains to be determined.


Subject(s)
Brain/metabolism , Dynorphins/metabolism , Gene Expression Regulation , Neurokinin B/metabolism , Reproduction/physiology , Animals , Dynorphins/genetics , Female , Mole Rats , Neurokinin B/genetics , Neurons/metabolism , Phosphorylation
9.
Sci Adv ; 5(6): eaav4275, 2019 06.
Article in English | MEDLINE | ID: mdl-31223646

ABSTRACT

Carcinoma cells undergo epithelial-mesenchymal transition (EMT); however, contributions of EMT heterogeneity to disease progression remain a matter of debate. Here, we addressed the EMT status of ex vivo cultured circulating and disseminated tumor cells (CTCs/DTCs) in a syngeneic mouse model of metastatic breast cancer (MBC). Epithelial-type CTCs with a restricted mesenchymal transition had the strongest lung metastases formation ability, whereas mesenchymal-type CTCs showed limited metastatic ability. EpCAM expression served as a surrogate marker to evaluate the EMT heterogeneity of clinical samples from MBC, including metastases, CTCs, and DTCs. The proportion of epithelial-type CTCs, and especially DTCs, correlated with distant metastases and poorer outcome of patients with MBC. This study fosters our understanding of EMT in metastasis and underpins heterogeneous EMT phenotypes as important parameters for tumor prognosis and treatment. We further suggest that EpCAM-dependent CTC isolation systems will underestimate CTC numbers but will quantify clinically relevant metastatic cells.


Subject(s)
Breast Neoplasms/pathology , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/physiology , Neoplasm Metastasis/pathology , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cell Line , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/metabolism , Female , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Prognosis
10.
Nat Commun ; 10(1): 2577, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189912

ABSTRACT

Many organisms coordinate rhythmic motor actions with those of a partner to generate cooperative social behavior such as duet singing. The neural mechanisms that enable rhythmic interindividual coordination of motor actions are unknown. Here we investigate the neural basis of vocal duetting behavior by using an approach that enables simultaneous recordings of individual vocalizations and multiunit vocal premotor activity in songbird pairs ranging freely in their natural habitat. We find that in the duet-initiating bird, the onset of the partner's contribution to the duet triggers a change in rhythm in the periodic neural discharges that are exclusively locked to the initiating bird's own vocalizations. The resulting interindividually synchronized neural activity pattern elicits vocalizations that perfectly alternate between partners in the ongoing song. We suggest that rhythmic cooperative behavior requires exact interindividual coordination of premotor neural activity, which might be achieved by integration of sensory information originating from the interacting partner.


Subject(s)
Behavior, Animal/physiology , Cooperative Behavior , Motor Cortex/physiology , Songbirds/physiology , Vocalization, Animal/physiology , Animals , Female , Learning , Male
11.
Biol Open ; 7(12)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30404900

ABSTRACT

Aggression is a fundamental part of animal social behaviour. In avian species, little is known about its neural representation. In particular, neural activity following offensive aggression has not been studied in detail. Here, we investigated the patterns of brain activation using immediate-early gene (IEG) expression in male Japanese quail that showed pronounced aggressive behaviours during a 30 min male-male interaction and compared them to those of males that did not interact with a conspecific. In aggressive males, we found a massive induction of the IEG ZENK in pallial brain structures such as the intermediate medial mesopallium, the caudomedial mesopallium and the intermediate medial nidopallium. To a lesser extent, activation was observed in subpallial areas such as the nucleus taeniae of the amygdala and in the medial portion of the bed nucleus of the stria terminalis. Our data suggest that the modulation of aggressive behaviour involves the integration of multisensory information.

12.
J Chem Neuroanat ; 94: 1-7, 2018 12.
Article in English | MEDLINE | ID: mdl-30118754

ABSTRACT

The eusocial Damaraland mole-rat (Fukomys damarensis) represents an extreme example of reproductive skew, in that reproduction is completely blocked in female subordinate group members. It is thought that in these animals normal GnRH secretion from the hypothalamus is disrupted. Prolactin, a peptide hormone secreted from the anterior pituitary gland, has been implicated in a wide variety of functions. Well documented in rodents is its role in mediating lactational infertility. Elevated circulating prolactin levels, such as during lactation, are associated with reduced GnRH release into the portal blood and with a reduction in the frequency and amplitude of LH pulses. The present study aimed at investigating whether such a mechanism could act in reproductively suppressed female Damaraland mole-rats. By means of in situ hybridisation we studied the distribution and gene expression of the prolactin receptor (Prlr) in wild-caught female Damaraland mole-rats with different reproductive status. Substantial Prlr expression was found in several brain regions, with highest levels in the choroid plexus and moderate expression in the preoptic and tuberal hypothalamus. While in reproductive and non-reproductive females plasma prolactin levels were very low and not significantly different, quantification of the Prlr hybridisation signal revealed significant differences in relation to reproductive status. Reproductively suppressed females had increased expression of Prlr in the choroid plexus and in the arcuate nucleus (ARC) when compared to reproductive females. This suggests higher local prolactin levels in the brain of suppressed females. Together with previous findings, it could indicate that prolactin inhibits ARC kisspeptin neurons, which then would lead to reduced activation of GnRH neurons in such females.


Subject(s)
Choroid Plexus/metabolism , Hypothalamus/metabolism , Prolactin/blood , Receptors, Prolactin/metabolism , Reproduction/physiology , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Mole Rats , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Prolactin/genetics
13.
Proc Natl Acad Sci U S A ; 114(49): 12994-12999, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29150554

ABSTRACT

IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1ß from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1ß to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-1beta/physiology , Interleukins/biosynthesis , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Culture Media, Conditioned , Female , Gene Expression Regulation, Neoplastic , Humans , Inflammasomes/metabolism , Interleukins/metabolism , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Transplantation , Signal Transduction , Tumor Burden , Interleukin-22
14.
Reproduction ; 153(4): 453-460, 2017 04.
Article in English | MEDLINE | ID: mdl-28104824

ABSTRACT

The Damaraland mole-rat (Fukomys damarensis) is a eusocial, subterranean rodent, in which breeding is limited to a single reproductive pair within each colony. Non-reproductive females, while in the confines of the colony, exhibit socially induced infertility. Anovulation is thought to be caused by a disruption in the normal gonadotropin-releasing hormone (GNRH) secretion from the hypothalamus. To assess whether social suppression is associated with altered Gnrh mRNA expression in the brain, we investigated the distribution and gene expression levels by means of in situ hybridization in female breeders and non-breeders from field captured colonies of the Damaraland mole-rat. We found expression of Gnrh mRNA as a loose network in several forebrain areas of female Damaraland mole-rats with the majority of labelling in the preoptic and anterior hypothalamus. The distribution matched previous findings using immunocytochemistry in this and other social mole-rat species. Quantification of the hybridisation signal revealed no difference between breeding and non-breeding females in the average optical density of the hybridization signal and the size of the total area covered by Gnrh mRNA. However, analysis along the rostro-caudal axis revealed significantly elevated Gnrh mRNA expression in the rostral preoptic region of breeders compared to non-breeders, whereas the latter had increased Gnrh mRNA expression at the caudal level of the anterior hypothalamus. This study indicates that social suppression affects the expression of Gnrh mRNA in female Damaraland mole-rats. Furthermore, differential regulation occurs within different neuron subpopulations.


Subject(s)
Brain/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , RNA, Messenger/metabolism , Reproduction/genetics , Social Environment , Animals , Breeding , Female , Gonadotropin-Releasing Hormone/genetics , In Situ Hybridization , Mole Rats , RNA, Messenger/genetics , Rats
15.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27881754

ABSTRACT

Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails (Turnix suscitator). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours.


Subject(s)
Aromatase/metabolism , Birds/physiology , Receptors, Androgen/metabolism , Sex Characteristics , Animals , Aromatase/genetics , Brain/physiology , Female , Male , Neurosecretory Systems/physiology , Receptors, Androgen/genetics , Testosterone
16.
Biol Lett ; 11(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26311160

ABSTRACT

Most songbirds learn their songs from adult tutors, who can be their father or other male conspecifics. However, the variables that control song learning in a natural social context are largely unknown. We investigated whether the time of hatching of male domesticated canaries has an impact on their song development and on the neuroendocrine parameters of the song control system. Average age difference between early- and late-hatched males was 50 days with a maximum of 90 days. Song activity of adult tutor males decreased significantly during the breeding season. While early-hatched males were exposed to tutor songs for on average the first 99 days, late-hatched peers heard adult song only during the first 48 days of life. Remarkably, although hatching late in the season negatively affected body condition, no differences between both groups of males were found in song characteristics either in autumn or in the following spring. Similarly, hatching date had no effect on song nucleus size and circulating testosterone levels. Our data suggest that late-hatched males must have undergone accelerated song development. Furthermore, the limited tutor song exposure did not affect adult song organization and song performance.


Subject(s)
Canaries/physiology , Vocalization, Animal , Acoustic Stimulation , Animals , Canaries/growth & development , Learning , Male , Seasons , Testosterone/blood , Time Factors
17.
Front Zool ; 11: 38, 2014.
Article in English | MEDLINE | ID: mdl-24839456

ABSTRACT

INTRODUCTION: The Damaraland mole-rat (Fukomys damarensis) is a eusocial, subterranean mammal, which exhibits an extreme reproductive skew with a single female (queen) monopolizing reproduction in each colony. Non-reproductive females in the presence of the queen are physiologically suppressed to the extent that they are anovulatory. This blockade is thought to be caused by a disruption in the normal gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In order to understand the underlying physiological mechanisms of reproductive suppression in subordinate females we studied the expression of steroid hormone receptors and the androgen-converting enzyme aromatase in forebrain regions involved in the control of reproductive behaviour in female breeders and non-breeders from intact colonies. Additionally, we included in our analysis females that experienced the release from social suppression by being removed from the presence of the queen. RESULTS: We found expression of androgen receptor, estrogen receptor α and aromatase in several forebrain regions of female Damaraland mole-rats. Their distribution matches previous findings in other mammals. Quantification of the hybridisation signal revealed that queens had increased expression of androgen receptors compared to non-breeders and removed non-breeders in most brain regions examined, which include the medial preoptic area (MPOA), the principal nucleus of the bed nucleus of the stria terminalis (BSTp), the ventromedial nucleus of the hypothalamus (VMH), the arcuate nucleus (ARC) and the medial amygdala (MeA). Furthermore, breeders had increased estrogen receptor α expression in the anteroventral periventricular nucleus (AVPV) and in the MeA, while aromatase expression in the AVPV was significantly reduced compared to non-breeders. Absence of social suppression was associated with increased androgen receptor expression in the ARC, increased estrogen receptor α expression in the MeA and BSTp and reduced aromatase expression in the AVPV. CONCLUSION: This study shows that social suppression and breeding differentially affect the neuroendocrine phenotype of female Damaraland mole-rats. The differential expression pattern of estrogen receptor α and aromatase in the AVPV between breeders and non-breeders supports the view that this region plays an important role in mediating the physiological suppression in subordinate females.

18.
Brain Res ; 1498: 69-84, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23268351

ABSTRACT

The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI.


Subject(s)
Brain Injuries/drug therapy , Cerebral Cortex/drug effects , Indoles/pharmacology , Neuroimmunomodulation/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Brain Injuries/pathology , Brain Injuries/physiopathology , Cell Count , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cyclooxygenase 2/metabolism , Disease Models, Animal , Disease Progression , Granulocytes/drug effects , Granulocytes/pathology , Granulocytes/physiology , Leukosialin/metabolism , Lipoxygenase Inhibitors/pharmacology , Macrophages/drug effects , Macrophages/pathology , Macrophages/physiology , Male , Microscopy, Confocal , Neuroimmunomodulation/physiology , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley
19.
Horm Behav ; 63(1): 122-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085444

ABSTRACT

For male songbirds of the temperate zone there is a tight link between seasonal song behaviour and circulating testosterone levels. Such a relationship does not seem to hold for tropical species where singing can occur year-round and breeding seasons are often extended. White-browed sparrow weavers (Plocepasser mahali) are cooperatively breeding songbirds with a dominant breeding pair and male and female subordinates found in eastern and southern Africa. Each group defends an all-purpose territory year-round. While all group members sing duets and choruses, the most dominant male additionally sings a solo song that comprises a distinct and large syllable repertoire. Previous studies suggested this type of song being associated with reproduction but failed to support a relationship with males' circulating testosterone levels. The present study aimed to investigate the steroid hormone sensitivity of the solo song in more detail. We found that dominant males had significantly higher circulating testosterone levels than subordinates during the early and late breeding seasons. No changes in solo song characteristics were found between both time points. Further, experimental implantation of captive adult females with exogenous testosterone induced solo singing within one week of treatment. Such females produced male-typical song regarding overall structure and syllable composition. Sex differences existed, however, concerning singing activity, repertoire size and temporal organisation of song. These results suggest that solo singing in white-browed sparrow weavers is under the control of gonadal steroid hormones. Moreover, the behaviour is not male-specific but can be activated in females under certain conditions.


Subject(s)
Androgens/pharmacology , Singing/drug effects , Songbirds/physiology , Testosterone/pharmacology , Animals , Brain/drug effects , Female , Male , Sex Characteristics , Social Behavior , Sound Spectrography , Testosterone/blood
20.
Exp Transl Stroke Med ; 4(1): 17, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22920434

ABSTRACT

Bone marrow-derived mononuclear cells (BM MNC) have been effectively used to treat experimental stroke. Most of the preclinical trials have been performed in young and healthy laboratory animals, even though age and hypertension are major risk factors for stroke. To determine the influence of age on the properties of BM MNCs after cerebral ischemia, we compared the efficacy of aged and young BM MNC in an in vitro model of cerebral hypoxia and in an adapted in vivo model of stroke. Human BM MNCs were obtained from healthy young or aged donors and either co-cultured with rat hippocampal slices exposed to oxygen glucose deprivation (OGD), or transplanted intravenously 24 h after permanent middle cerebral artery occlusion in aged (18 months) spontaneously hypertensive rats (SHR). Efficacy was examined by quantification of hippocampal cell death, or respectively, by neurofunctional tests and MR investigations. Co-cultivation with young, but not with aged BM MNCs significantly reduced the hippocampal cell death after OGD. Transplantation of both young and old BM MNCs did not reduce functional deficits or ischemic lesion volume after stroke in aged SHR. These results suggest a significant impact of age on the therapeutic efficacy of BM MNCs after cerebral ischemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...