Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
IEEE Robot Autom Lett ; 7(4): 10296-10303, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36345294

ABSTRACT

The current crisis surrounding the COVID-19 pandemic demonstrates the amount of responsibility and the workload on our healthcare system and, above all, on the medical staff around the world. In this work, we propose a promising approach to overcome this problem using robot-assisted telediagnostics, which allows medical experts to examine patients from distance. The designed telediagnostic system consists of two robotic arms. Each robot is located at the doctor and patient sites. Such a system enables the doctor to have a direct conversation via telepresence and to examine patients through robot-assisted inspection (guided tactile and audiovisual contact). The proposed bilateral teleoperation system is redundant in terms of teleoperation control algorithms and visual feedback. Specifically, we implemented two main control modes: joint-based and displacement-based teleoperation. The joint-based mode was implemented due to its high transparency and ease of mapping between Leader and Follower whereas the displacement-based is highly flexible in terms of relative pose mapping and null-space control. Tracking tests between Leader and Follower were conducted on our system using both wired and wireless connections. Moreover, our system was tested by seven medical doctors in two experiments. User studies demonstrated the system's usability and it was successfully validated by the medical experts.

2.
Endosc Int Open ; 10(8): E1022-E1028, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35979027

ABSTRACT

Background and study aims Optimal hygiene is crucial for patients undergoing flexible endoscopy. Reprocessing is currently influenced by manual procedures performed by endoscopy staff. To overcome this limitation, we designed and evaluated the integration of robotic application for an automated endoscope processing pathway. Methods We used an endoscope reprocessing pass through machine with drying cabinet and a Franka Emika Panda robot. The robot was programmed to interact with its environment in a compliant way, guaranteeing desired contact force thresholds and therefore ensuring safety of both robot and medical equipment. Results In an initial phase we tested the robots' ability to handle a modified tray holding an endoscope as well as certain challenges (correct positioning, connection of tubing, undesired collisions). We added another Panda robot arm resulting in a device featuring two independent manipulators and tested the accuracy of each individual step. We evaluated 50 consecutive processing and transfer procedures, simulating the average daily throughput of an endoscopic unit. The endoscopes were removed in adapted tray using a specially designed lifting device and placed in an endoscope storage and venting cabinet. The mean time for the handling of the scope was 104.2 ±â€Š1.2 seconds and an accuracy of 100 % (0 failures in 50 attempts) was achieved. Conclusions To the best of our knowledge, this is the first description and evaluation of an automated compliant robotic assistance in the processing of endoscopes. Further development could help to overcome shortcomings of the man handled endoscope processing and could lead to reproducible, standardized and certified endoscope processing.

3.
Rofo ; 193(11): 1294-1303, 2021 Nov.
Article in English, German | MEDLINE | ID: mdl-34553362

ABSTRACT

OBJECTIVE: The aim was to develop a new curriculum for radiology in medical studies, to reach a national consensus and to integrate it into the new national competence-based learning objectives catalog (NKLM 2.0). In this statement of the German Radiological Society (DRG), the process of curriculum development is described and the new curriculum is presented together with suggestions for practical implementation. MATERIALS AND METHODS: The DRG has developed a new curriculum for radiology. This was coordinated nationally among faculty via an online survey and the result was incorporated into the NKLM 2.0. Furthermore, possibilities for the practical implementation of the competency-based content are shown and different teaching concepts are presented. RESULTS: The developed curriculum is competency-based and aims to provide students with important skills and abilities for their future medical practice. The general part of the curriculum is divided into the topics "Radiation Protection", "Radiological Methods" and radiologically-relevant "Digital Skills". Furthermore, there is a special part on the individual organ systems and the specific diseases. In order to implement this in a resource-saving way, new innovative teaching concepts are needed that combine the advantages of face-to-face teaching in small groups for practical and case-based learning with digital teaching offers for resource-saving teaching of theoretical content. CONCLUSION: We have created a uniform radiology curriculum for medical studies in Germany, coordinated it nationally and integrated it into the NKLM 2.0. The curriculum forms the basis of a uniform mandatory radiology teaching and should be the basis for the individual curriculum development of each faculty and strengthen the position of radiology in the interdisciplinary context. KEY POINTS: · A radiology curriculum for undergraduate medical education was developed.. · The curriculum was brought into agreement among the faculties in Germany and integrated into the NKLM 2.0.. · This curriculum is intended to be the basis for curriculum development and to strengthen the position of radiology.. · In order to implement the competence-based teaching, new innovative teaching concepts are necessary.. CITATION FORMAT: · Dettmer S, Barkhausen J, Volmer E et al. White Paper: Radiology Curriculum for Undergraduate Medical Education in Germany and Integration into the NKLM 2.0. Fortschr Röntgenstr 2021; 193: 1294 - 1303.


Subject(s)
Education, Medical, Undergraduate , Education, Medical , Radiology , Clinical Competence , Curriculum , Germany , Humans , Radiology/education
4.
Front Neurol ; 8: 455, 2017.
Article in English | MEDLINE | ID: mdl-28912751

ABSTRACT

Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e.g., toll-like receptors (TLRs). Since the role of TLR2 and 4 after traumatic brain injury (TBI) is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4-/- and wild-type (WT) mice. Tlr2/4-/- and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI). Contusion volume was significantly attenuated in Tlr2/4-/- mice (29.7 ± 0.7 mm3 as compared to 33.5 ± 0.8 mm3 in WT; p < 0.05) after CCI while brain edema was not affected. Only interleukin (IL)-1ß gene expression was increased after CCI in the Tlr2/4-/- relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4-/- mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI.

SELECTION OF CITATIONS
SEARCH DETAIL
...