Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Neurosci ; 59(6): 1260-1277, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38039083

ABSTRACT

Phasic dopamine activity is believed to both encode reward-prediction errors (RPEs) and to cause the adaptations that these errors engender. If so, a rat working for optogenetic stimulation of dopamine neurons will repeatedly update its policy and/or action values, thus iteratively increasing its work rate. Here, we challenge this view by demonstrating stable, non-maximal work rates in the face of repeated optogenetic stimulation of midbrain dopamine neurons. Furthermore, we show that rats learn to discriminate between world states distinguished only by their history of dopamine activation. Comparison of these results to reinforcement learning simulations suggests that the induced dopamine transients acted more as rewards than RPEs. However, pursuit of dopaminergic stimulation drifted upwards over a time scale of days and weeks, despite its stability within trials. To reconcile the results with prior findings, we consider multiple roles for dopamine signalling.


Subject(s)
Dopamine , Learning , Rats , Animals , Dopamine/physiology , Learning/physiology , Reinforcement, Psychology , Reward , Mesencephalon , Dopaminergic Neurons/physiology
2.
Eur J Neurosci ; 50(9): 3416-3427, 2019 11.
Article in English | MEDLINE | ID: mdl-31350860

ABSTRACT

The priming effect of rewards is a boost in the vigor of reward seeking resulting from the previous receipt of a reward. Extensive work has been carried out on the priming effect of electrical brain stimulation, but much less research exists on the priming effect of natural rewards, such as food. While both reinforcement and motivation are linked with dopamine transmission in the brain, the priming effect of rewards does not appear to be dopamine-dependent. In the present study, an operant method was developed to measure the priming effect of food and then applied to investigate whether it is affected by dopamine receptor antagonism. Long-Evans rats were administered saline or one of the three doses (0.01, 0.05, 0.075 mg/kg) of the dopamine D1 receptor family antagonist, SCH23390, or the dopamine D2 receptor family antagonist, eticlopride. Although dopamine receptor antagonism affected pursuit of food, it did not eliminate the priming effect. These data suggest that despite the involvement of dopamine transmission in reinforcement and motivation, the priming effect of food does not depend on dopamine transmission.


Subject(s)
Benzazepines/pharmacology , Food , Repetition Priming/drug effects , Salicylamides/pharmacology , Animals , Conditioning, Operant/drug effects , Dopamine Antagonists/pharmacology , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL