Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(731): eadd1834, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38266104

ABSTRACT

Tumor-associated macrophages (TAMs) are a critical determinant of resistance to PD-1/PD-L1 blockade. This phase 1 study (MEDIPLEX, NCT02777710) investigated the safety and efficacy of pexidartinib, a CSF-1R-directed tyrosine kinase inhibitor (TKI), and durvalumab (anti-PD-L1) in patients with advanced colorectal and pancreatic carcinoma with the aim to enhance responses to PD-L1 blockade by eliminating CSF-1-dependent suppressive TAM. Forty-seven patients were enrolled. No unexpected toxicities were observed, one (2%) high microsatellite instability CRC patient had a partial response, and seven (15%) patients experienced stable disease as their best response. Increase of CSF-1 concentrations and decrease of CD14lowCD16high monocytes in peripheral blood mononuclear cells (PBMCs) confirmed CSF-1R engagement. Treatment decreased blood dendritic cell (DC) subsets and impaired IFN-λ/IL-29 production by type 1 conventional DCs in ex vivo TLR3-stimulated PBMCs. Pexidartinib also targets c-KIT and FLT3, both key growth factor receptors of DC development and maturation. In patients, FLT3-L concentrations increased with pexidartinib treatment, and AKT phosphorylation induced by FLT3-L ex vivo stimulation was abrogated by pexidartinib in human blood DC subsets. In addition, pexidartinib impaired the FLT3-L- but not GM-CSF-dependent generation of DC subsets from murine bone marrow (BM) progenitors in vitro and decreased DC frequency in BM and tumor-draining lymph node in vivo. Our results demonstrate that pexidartinib, through the inhibition of FLT3 signaling, has a deleterious effect on DC differentiation, which may explain the limited antitumor clinical activity observed in this study. This work suggests that inhibition of FLT3 should be considered when combining TKIs with immune checkpoint inhibitors.


Subject(s)
Aminopyridines , Antibodies, Monoclonal , B7-H1 Antigen , Pancreatic Neoplasms , Pyrroles , Humans , Animals , Mice , Macrophage Colony-Stimulating Factor , Leukocytes, Mononuclear , Receptor Protein-Tyrosine Kinases , fms-Like Tyrosine Kinase 3
2.
Methods Mol Biol ; 2618: 187-197, 2023.
Article in English | MEDLINE | ID: mdl-36905518

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that have the ability to orchestrate adaptive and innate immune responses by antigen phagocytosis and T cell activation across different inflammatory settings such as tumor development. As specific DC identity and how these cells interact with their neighbors is still not fully understood, it remains a challenge to unravel DC heterogeneity, particularly in human cancers. In this chapter, we describe a protocol to isolate and characterize tumor-infiltrating DCs.


Subject(s)
Dendritic Cells , Neoplasms , Humans , Mice , Animals , Lymphocyte Activation , Neoplasms/pathology , Phagocytosis
3.
Am J Cancer Res ; 12(3): 1116-1128, 2022.
Article in English | MEDLINE | ID: mdl-35411223

ABSTRACT

An increasing number of studies concerning solid cancers, including prostate cancer, are tending to demonstrate the predominant role of the interactions of tumor cells with their microenvironment, and underlining the relevance of therapeutic approaches co-targeting these two components. Artificial in vitro 3D culture models, such as spheroids, are therefore being designed to allow intercellular interactions between tumor cells and the matrix, under hypoxic conditions mimicking a microtumor. This project aims to develop and characterize a multicellular tumor spheroid (MCTS) model of human prostate cancer cells expressing PSMA, for in vitro drug screening. To this end, 1,000 cells/well were seeded in 100 µl of culture medium with 0.5% of methylcellulose in 96-well, non-adherent, V-shaped bottom plates. Bioluminescent imaging of the spheroids enabled the measurement of spheroid growth. From Day 7 of growth, immunofluorescence studies showed cellular proliferation (Ki-67), mainly located in the periphery of the spheroid section, associated with the formation of an apoptotic core (TUNEL). Scanning electron microscopy and fluorescent imaging (Lox-1 probe) showed the presence of an extracellular matrix and the installation of an oxygen gradient leading to the formation of a hypoxic area during growth. This hypoxia was correlated with increased VEGF excretion. Drug sensitivity was assessed on 2D and 3D cultures. The LNCaP-Luc spheroids are more resistant to docetaxel and TH-302, a hypoxia-activated prodrug, compared with cells grown in a monolayer. For docetaxel, this resistance increased with the spheroid growth stage, whereas the activity of TH-302 was potentiated by the hypoxic environment. In conclusion, the development of LNCaP-Luc cell MCTS provides a simple model mimicking a microtumor; it appears to be particularly well-suited to the validation of new therapeutic approaches targeting proliferation and the microenvironment.

4.
Invest New Drugs ; 39(2): 295-303, 2021 04.
Article in English | MEDLINE | ID: mdl-32948981

ABSTRACT

Currently, there is no gold standard treatment for Extraskeletal Myxoid Chondrosarcomas (EMC) making wide margin surgical resection the most effective alternative treatment. Nevertheless, in previous preclinical studies our lab demonstrated the potential of the hypoxia-activated prodrug (HAP) ICF05016 on EMC murine model inoculated with the H-EMC-SS human cell line. The aim of this study was to assess, in vivo, the relevance of the combination of this HAP with External Beam Radiotherapy (EBR). Firstly EMC-bearing mice were treated with 6 Gy or 12 Gy of EBR (single 6 MV photon). Then for combination of HAP and EBR, animals received 6 doses of ICF05016 (46.8 µmol/kg, intravenously) at 4-day intervals, with 6 Gy EBR performed 24 h after the 3rd dose of HAP. Animals were monitored throughout the study for clinical observations (tumour growth, side effects) and survival studies were performed. From tumour samples, PCNA, Ki-67 and p21 expressions were used as markers of proliferation and cell cycle arrest. Statistical significances were determined using Kruskall-Wallis and log rank tests. The radiosensitivity of the EMC model was demonstrated at 12 Gy with significant inhibition of tumour growth. Then, the HAP strategy potentiated EBR efficacy at a lower dose (6 Gy) by improving survival without generating side effects. Thus, results of this study showed the potential interest of ICF05016 for the combination with EBR in the management of EMC.


Subject(s)
Chemoradiotherapy/methods , Chondrosarcoma/therapy , Imidazoles/administration & dosage , Neoplasms, Connective and Soft Tissue/therapy , Prodrugs/administration & dosage , Animals , Cell Line , Chemoradiotherapy/adverse effects , Chondrosarcoma/mortality , Disease Models, Animal , Female , Humans , Mice , Mice, SCID , Neoplasms, Connective and Soft Tissue/mortality , Radiation Dosage , Tumor Burden
5.
Bioorg Chem ; 98: 103747, 2020 05.
Article in English | MEDLINE | ID: mdl-32208207

ABSTRACT

The tumor microenvironment in chondrosarcoma (CHS), a chemo- and radio-resistant cancer provides unique hallmarks for developing a chondrosarcoma targeted drug-delivery system. Tumor targeting could be achieved using a quaternary ammonium function (QA) as a ligand for aggrecan, the main high negative charged proteoglycan of the extracellular matrix of CHS, and a 2-nitroimidazole as trigger that enables hypoxia-responsive drug release. In a previous work, ICF05016 was identified as efficient proteoglycan-targeting hypoxia-activated prodrug in a human extraskeletal myxoid chondrosarcoma model in mice and a first study of the structure-activity relationship of the QA function and the alkyl linker length was conducted. Here, we report the second part of the study, namely the modification of the nitro-aromatic trigger and the position of the proteoglycan-targeting ligand at the aromatic ring as well as the nature of the alkylating mustard. Synthetic approaches have been established to functionalize the 2-nitroimidazole ring at the N-1 and C-4 positions with a terminal tertiary alkyl amine, and to perform the phosphorylation step namely through the use of an amine borane complex, leading to phosphoramide and isophosphoramide mustards and also to a phosphoramide mustard bearing four 2-chloroethyl chains. In a preliminary study using a reductive chemical activation, QA-conjugates, except the 4-nitrobenzyl one, were showed to undergo efficient cleavage with release of the corresponding mustard. However N,N,N-trimethylpropylaminium tethered to the N-1 or C-4 positions of the imidazole seemed to hamper the enzymatic reduction of the prodrugs and all tested compounds featured moderate selectivity toward hypoxic cells, likely not sufficient for application as hypoxia-activated prodrugs.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Chondrosarcoma/drug therapy , Drug Design , Neoplasms, Connective and Soft Tissue/drug therapy , Phosphoramide Mustards/pharmacology , Prodrugs/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chondrosarcoma/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasms, Connective and Soft Tissue/pathology , Phosphoramide Mustards/chemical synthesis , Phosphoramide Mustards/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship
6.
Eur J Med Chem ; 158: 51-67, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30199705

ABSTRACT

Due to an abundant chondrogenic, poorly vascularized and particularly hypoxic extracellular matrix, chondrosarcoma, a malignant cartilaginous tumour, is chemo- and radio-resistant. Surgical resection with wide margins remains the mainstay of treatment. To address the lack of therapy, our strategy aims to increase anticancer drugs targeting and delivery in the tumour, by leveraging specific chondrosarcoma hallmarks: an extensive cartilaginous extracellular matrix, namely the high negative fixed charge density and severe chronic hypoxia. A dual targeted therapy for chondrosarcoma was investigated by conjugation of a hypoxia-activated prodrug (HAP) to quaternary ammonium (QA) functions which exhibit a high affinity for polyanionic sites of proteoglycans (PGs), the major components of the chondrosarcoma extracellular matrix. Based on preclinical results, an imidazole prodrug, ICF05016, was identified and provided the basis for a lead optimization study. A series of 27 QA-phosphoramide mustard conjugates, differing by the type of QA function and the length of the alkyl linker, was yielded by a common multi-step sequence involving phosphorylation of a key 2-nitroimidazole alcohol. Then, a screening was realized by surface plasmon resonance technology to assess biomolecular interactions between QA derivatives and aggrecan, the most abundant PG in chondrosarcoma. Results revealed that affinity depends more on the type of QA function, than on the linker length. Moreover, the presence of a benzyl group enhanced affinity to aggrecan. Twelve compounds were shortlisted and evaluated for antiproliferative activity (i.e., growth inhibiting concentration 50), under normoxic and hypoxic conditions using the human extraskeletal myeloid chondrosarcoma cell line (HEMC-SS). For all prodrugs, hypoxic selectivity was maintained and even increased, compared with the lead. From this study, compound 31f emerged as the most effective PG-targeted HAPs with a dissociation constant of 2.10 µM in the SPR experiment, a hypoxia cytotoxicity ratio of 24 and an efficient reductive cleavage under chemical and enzymatic conditions.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Chondrosarcoma/drug therapy , Prodrugs/pharmacology , Proteoglycans/metabolism , Quaternary Ammonium Compounds/pharmacology , Aggrecans/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Humans , Molecular Targeted Therapy , Oxygen/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/metabolism , Structure-Activity Relationship , Tumor Hypoxia/drug effects
7.
Oncotarget ; 8(56): 95824-95840, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29221170

ABSTRACT

Due to its abundant chondrogenic matrix and hypoxic tissue, chondrosarcoma is chemo- and radio-resistant. Our group has developed a proteoglycan targeting strategy by using a quaternary ammonium (QA) function as a carrier of DNA alkylating agents to chondrosarcoma environment. Here, we assessed the relevance of this strategy applied to hypoxia-activated prodrugs, by conjugating a QA to 2-nitroimidazole phosphoramidate. This derivative, named as 8-QA, was evaluated respectively to its non-QA equivalent and to a QA-conjugated but non-hypoxia activated. Firstly binding to aggrecan was confirmed from dissociation constant determined by Surface Plasmon Resonance. In vitro, in HEMC-SS chondrosarcoma cells cultured in monolayer and in spheroids, 8-QA showed higher cytotoxic activity in hypoxia versus normoxia, and led to a strong accumulation of cells in S phase and apoptosis. In vivo, a HEMC-SS xenograft model was implanted on SCID mice and characterized for hypoxia by photoacoustic imaging as well as proteoglycan content. When HEMC-SS bearing mice were given 8-QA at 47 µmol/kg according to a q4d x 6 schedule, a significant 62.1% inhibition of tumor growth was observed, without associated hematological side effects. Mechanistic studies of treated tumors highlighted decrease in mitotic index associated to increase in both p21 and p53S15 markers. Interestingly, 8-QA treatment induced an increase of DNA damages as measured by γH2AX predominantly found in pimonidazole-positive hypoxic areas. These preclinical results are the first to demonstrate the interest of addressing hypoxia-activated prodrugs selectively to proteoglycan of chondrogenic tumor tissue, as a promising therapeutic strategy.

8.
PLoS One ; 12(7): e0181340, 2017.
Article in English | MEDLINE | ID: mdl-28704566

ABSTRACT

It has been suggested that chemoresistance of chondrosarcoma (CHS), the cartilage tumor, is caused by the phenotypic microenvironmental features of the tumor tissue, mainly the chondrogenic extracellular matrix (ECM), and hypoxia. We developed and characterized a multicellular tumor spheroid (MCTS) of human chondrosarcoma HEMC-SS cells to gain insight into tumor cell biology and drug response. At Day 7, HEMC-SS spheroids exhibited a homogeneous distribution of proliferative Ki-67 positive cells, whereas in larger spheroids (Day 14 and Day 20), proliferation was mainly localized in the periphery. In the core of larger spheroids, apoptotic cells were evidenced by TUNEL assay, and hypoxia by pimonidazole staining. Interestingly, VEGF excretion, evidenced by ELISA on culture media, was detectable from Day 14 spheroids, and increased as the spheroids grew in size. HEMC-SS spheroids synthesized a chondrogenic extracellular matrix rich in glycosaminoglycans and type-2 collagen. Finally, we investigated the sensitivity of Day 7 and Day 14 chondrosarcoma MCTS to hypoxia-activated prodrug TH-302 and doxorubicin compared with their 2D counterparts. As expected, TH-302 exhibited higher cytotoxic activity on larger hypoxic spheroids (Day 14) than on non-hypoxic spheroids (Day 7), with multicellular resistance index (MCRI) values of 7.7 and 9.1 respectively. For doxorubicin, the larger-sized spheroids exhibited higher drug resistance (MCRI of 5.0 for Day 7 and 18.3 for Day 14 spheroids), possibly due to impeded drug penetration into the deep layer of spheroids, evidenced by its auto-fluorescence property. We have developed a model of human chondrosarcoma MCTS that combines an ECM rich in glycosaminoglycans with a high hypoxic core associated with VEGF excretion. This model could offer a more predictive in vitro chondrosarcoma system for screening drugs targeting tumor cells and their microenvironment.


Subject(s)
Bone Neoplasms/pathology , Cell Culture Techniques/methods , Chondrosarcoma/pathology , Drug Screening Assays, Antitumor/methods , Spheroids, Cellular/pathology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Humans , Nitroimidazoles/pharmacology , Phosphoramide Mustards/pharmacology , Spheroids, Cellular/drug effects , Tissue Scaffolds/chemistry
9.
Mol Cancer Ther ; 15(11): 2575-2585, 2016 11.
Article in English | MEDLINE | ID: mdl-27573424

ABSTRACT

To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [3H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99mTc-NTP 15-5 scintigraphic imaging of PGs, 1H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/metabolism , Chondrosarcoma/metabolism , Proteoglycans/metabolism , Animals , Bone Neoplasms/diagnosis , Bone Neoplasms/drug therapy , Cell Line, Tumor , Chondrosarcoma/diagnosis , Chondrosarcoma/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Male , Melphalan/chemistry , Melphalan/pharmacology , Molecular Imaging/methods , Optical Imaging/methods , Quaternary Ammonium Compounds/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...