Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 90(6): e0013122, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35583346

ABSTRACT

Mycoplasma genitalium is a sexually transmitted bacterial pathogen that causes urogenital disease in men and women. M. genitalium infections can persist for months to years and can ascend to the upper reproductive tract in women where it is associated with serious sequelae including pelvic inflammatory disease, tubal factor infertility, and preterm birth. An animal model is needed to understand immune evasion strategies that allow persistence, mechanisms of ascending infection, and factors associated with clearance. In earlier studies, we determined that pig-tailed macaques are susceptible to cervical infection; however, not all primates were successfully infected, persistence varied between animals, and ascension to the upper reproductive tract was not observed after 4 or 8 weeks of follow-up. Building on our previous findings, we refined our inoculation methods to increase infection rates, extended observation to 18 weeks, and comprehensively sampled the upper reproductive tract to detect ascending infection. With these improvements, we established infection in all (3/3) primates inoculated with M. genitalium and demonstrated lower tract persistence for 16 to 18 weeks. Ascension to the upper reproductive tract at endpoint was observed in two out of three primates. All three primates developed serum and local antibodies reacting primarily to the MgpB and MgpC adherence proteins. Elevated genital polymorphonuclear leukocytes (PMNs) and inflammatory cytokines and chemokines, erythema of the ectocervix in one primate, and histologic evidence of vaginitis and endocervicitis in two primates suggest a mild to moderate inflammatory response to infection. This model will be valuable to understand the natural history of M. genitalium infection including mechanisms of persistence, immune evasion, and ascension to the upper reproductive tract.


Subject(s)
Mycoplasma Infections , Mycoplasma genitalium , Premature Birth , Reproductive Tract Infections , Animals , Female , Humans , Infant, Newborn , Macaca nemestrina , Mycoplasma Infections/microbiology
2.
Viruses ; 13(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34452338

ABSTRACT

BACKGROUND: medication-assisted treatment (MAT) with buprenorphine is now widely prescribed to treat addiction to heroin and other illicit opioids. There is some evidence that illicit opioids enhance HIV-1 replication and accelerate AIDS pathogenesis, but the effect of buprenorphine is unknown. METHODS: we obtained peripheral blood mononuclear cells (PBMCs) from healthy volunteers and cultured them in the presence of morphine, buprenorphine, or methadone. We infected the cells with a replication-competent CCR5-tropic HIV-1 reporter virus encoding a secreted nanoluciferase gene, and measured infection by luciferase activity in the supernatants over time. We also surveyed opioid receptor expression in PBMC, genital epithelial cells and other leukocytes by qPCR and western blotting. Reactivation from latency was assessed in J-Lat 11.1 and U1 cell lines. RESULTS: we did not detect expression of classical opioid receptors in leukocytes, but did find nociception/orphanin FQ receptor (NOP) expression in blood and vaginal lymphocytes as well as genital epithelial cells. In PBMCs, we found that at physiological doses, morphine, and methadone had a variable or no effect on HIV infection, but buprenorphine treatment significantly increased HIV-1 infectivity (median: 8.797-fold increase with 20 nM buprenorphine, eight experiments, range: 3.570-691.9, p = 0.0078). Using latently infected cell lines, we did not detect reactivation of latent HIV following treatment with any of the opioid drugs. CONCLUSIONS: our results suggest that buprenorphine, in contrast to morphine or methadone, increases the in vitro susceptibility of leukocytes to HIV-1 infection but has no effect on in vitro HIV reactivation. These findings contribute to our understanding how opioids, including those used for MAT, affect HIV infection and reactivation, and can help to inform the choice of MAT for people living with HIV or who are at risk of HIV infection.


Subject(s)
Buprenorphine/pharmacology , HIV Infections/virology , HIV-1/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , HIV-1/genetics , HIV-1/physiology , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Methadone/pharmacology , Morphine/pharmacology , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Virus Replication/drug effects , Nociceptin Receptor
3.
ACS Appl Mater Interfaces ; 10(40): 33847-33856, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30152229

ABSTRACT

Small magnetic nanoparticles that have surfaces decorated with stimuli-responsive polymers can be reversibly aggregated via a stimulus, such as temperature, to enable efficient and rapid biomarker separation. To fully realize the potential of these particles, the synthesis needs to be highly reproducible and scalable to large quantity. We have developed a new synthesis for temperature-responsive magnetic nanoparticles via an in situ co-precipitation process of Fe2+/Fe3+ salts at room temperature with poly(acrylic acid)- block-poly( N-isopropylacrylamide) diblock co-polymer template, synthesized via the reversible addition-fragmentation chain-transfer polymerization method. These particles were 56% polymer by weight with a 6.5:1 Fe/COOH ratio and demonstrated remarkable stability over a 2 month period. The hydrodynamic diameter remained constant at ∼28 nm with a consistent transition temperature of 34 °C, and the magnetic particle separation efficiency at 40 °C was ≥95% over the 2 month span. These properties were maintained for all large-scale synthesis batches. To demonstrate the practical utility of the stimuli-responsive magnetic nanoparticles, the particles were incorporated into a temperature-responsive binary reagent system and efficiently separated a model protein biomarker (mouse IgG) as well as purified extracellular vesicles derived from a human biofluid, seminal plasma. The ease of using these particles will prove beneficial for various biomedical applications.


Subject(s)
Coated Materials, Biocompatible/chemistry , Extracellular Vesicles/chemistry , Magnetic Fields , Magnetite Nanoparticles/chemistry , Semen/chemistry , Animals , Humans , Immunoglobulin G/isolation & purification , Male , Mice
4.
Proc Natl Acad Sci U S A ; 111(41): 14888-93, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267620

ABSTRACT

Exosomes have been proposed as vehicles for microRNA (miRNA) -based intercellular communication and a source of miRNA biomarkers in bodily fluids. Although exosome preparations contain miRNAs, a quantitative analysis of their abundance and stoichiometry is lacking. In the course of studying cancer-associated extracellular miRNAs in patient blood samples, we found that exosome fractions contained a small minority of the miRNA content of plasma. This low yield prompted us to perform a more quantitative assessment of the relationship between miRNAs and exosomes using a stoichiometric approach. We quantified both the number of exosomes and the number of miRNA molecules in replicate samples that were isolated from five diverse sources (i.e., plasma, seminal fluid, dendritic cells, mast cells, and ovarian cancer cells). Regardless of the source, on average, there was far less than one molecule of a given miRNA per exosome, even for the most abundant miRNAs in exosome preparations (mean ± SD across six exosome sources: 0.00825 ± 0.02 miRNA molecules/exosome). Thus, if miRNAs were distributed homogenously across the exosome population, on average, over 100 exosomes would need to be examined to observe one copy of a given abundant miRNA. This stoichiometry of miRNAs and exosomes suggests that most individual exosomes in standard preparations do not carry biologically significant numbers of miRNAs and are, therefore, individually unlikely to be functional as vehicles for miRNA-based communication. We propose revised models to reconcile the exosome-mediated, miRNA-based intercellular communication hypothesis with the observed stoichiometry of miRNAs associated with exosomes.


Subject(s)
Exosomes/genetics , MicroRNAs/genetics , Cell Line, Tumor , Exosomes/ultrastructure , Gene Dosage , Humans , MicroRNAs/blood , Models, Biological , Neoplasms/blood , Neoplasms/genetics
5.
Infect Immun ; 80(8): 2878-85, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22689811

ABSTRACT

The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1ß) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1ß is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1ß. Although zebrafish encode orthologs of IL-1ß and inflammatory caspases, the processing of IL-1ß by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1ß processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1ß processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1ß into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1ß, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1ß in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.


Subject(s)
Caspases/metabolism , Francisella/classification , Gram-Negative Bacterial Infections/microbiology , Inflammation/enzymology , Interleukin-1beta/metabolism , Zebrafish Proteins/metabolism , Amino Acid Sequence , Animals , Caspases/genetics , Gene Expression Regulation , Gram-Negative Bacterial Infections/metabolism , HEK293 Cells , Humans , Interleukin-1beta/genetics , Molecular Sequence Data , Zebrafish , Zebrafish Proteins/genetics
6.
Dev Comp Immunol ; 35(9): 886-97, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21241729

ABSTRACT

A key facet of the innate immune response lays in its ability to recognize and respond to invading microorganisms and cellular disturbances. Through the use of germ-line encoded PRRs, the innate immune system is capable of detecting invariant pathogen motifs termed pathogen-associated molecular patterns (PAMPS) that are distinct from host encoded proteins or products released from dying cells, which are known as damage-associated molecular patterns (DAMPs). PAMPs and DAMPs include both protein and nucleic acids for the detection and response to pathogens and metabolic "danger" signals. This is by far one of the most active areas of research as recent studies have shown retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) and Toll-like receptors (TLRs) and the recently described AIM-like receptors (ALRs) are responsible for initiating interferon production or the assembly and activation of the inflammasome, ultimately resulting in the release of bioactive IL-1 family members. Overall, the vertebrate PRR recognition machinery consists of seven domains (e.g., Death, NACHT, CARD, TIR, LRR, PYD, helicase), most of which can be traced to the very origins of the deuterostomes. This review is intended to provide an overview of the basic components that are used by vertebrates to detect and respond to pathogens, with an emphasis on these receptors in fish as well as a brief note on their likely origins.


Subject(s)
Host-Pathogen Interactions , Infections/immunology , Infections/metabolism , Interferons/immunology , Receptors, Pattern Recognition/metabolism , Amino Acid Motifs/genetics , Animals , Apoptosis , Biological Evolution , Fishes , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate , Infections/genetics , Inflammasomes/immunology , Nucleic Acids/genetics , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Vertebrates
7.
Infect Immun ; 77(2): 914-25, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19047404

ABSTRACT

Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebrafish were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebrafish following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebrafish mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-1beta (IL-1beta), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebrafish to heat-killed bacteria demonstrated that the significant induction of IL-1beta was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebrafish share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach.


Subject(s)
Francisella , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/immunology , Gills/metabolism , Gram-Negative Bacterial Infections/pathology , Host-Pathogen Interactions , Immunohistochemistry , Kidney/metabolism , Kidney/microbiology , Kidney/pathology , Liver/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Spleen/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...