Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bratisl Lek Listy ; 125(4): 239-243, 2024.
Article in English | MEDLINE | ID: mdl-38526860

ABSTRACT

NTRODUCTION: Distal pancreatectomy is a standard surgical procedure for selected benign, premalignant, and malignant lesions localized in the pancreatic body or tail. Surgical resection remains the only curative option for patients diagnosed with adenocarcinoma of the pancreas. PATIENTS AND METHODS: Perioperative and postoperative clinical courses were retrospectively assessed in patients, who underwent distal pancreatectomy during the 2011‒2021 period. RESULTS: During the 2011‒2021 period, a total of 112 distal pancreatectomies were performed. 67 patients (59.8%) underwent laparoscopic distal pancreatectomy, and 45 patients (40.2%) open laparotomy. The conversion was necessary for 13 patients (11.6%). Distal pancreatectomies performed laparoscopically were associated more often with biochemical leak and the development of grade B fistula, on the other hand grade C fistula developed only in patients operated by open laparotomy (LPT). The mean operating time was slightly longer in the laparoscopic group (227.1 min vs 214.6 min). The mean estimated blood loss was significantly higher in the LPT group (540.4 ml vs 191.9 ml). The mean hospitalization time was slightly longer in the LPT group (11.8 days vs 9.3 days). The rates of early reoperations were comparable between both groups (6 vs 5). CONCLUSION: Laparoscopic techniques are preferred in centers around the world to bring patients benefits by using a minimally invasive approach. These techniques are also preferred in our center, in nearly 60% of all distal pancreatectomies performed during 10 years, but on the other hand, there is a much more careful approach chosen in cases of malignant disease to achieve adequate radicality (Tab.4, Ref. 20).


Subject(s)
Fistula , Laparoscopy , Pancreatic Neoplasms , Humans , Pancreatectomy , Pancreatic Neoplasms/surgery , Retrospective Studies , Pancreas , Laparoscopy/methods , Fistula/surgery , Treatment Outcome , Postoperative Complications
2.
Biology (Basel) ; 13(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248471

ABSTRACT

The issue of bone volume loss is playing an increasing role in bone tissue engineering. Research has focused on studying the preparation and use of different types of human or xenogenic materials and their osteogenic properties. An alternative source for this purpose could be autologous extracted teeth. The simple preparation protocol, minimal immune response, and rapid organizing of the newly formed bone with optimal mechanical properties predispose autologous hard teeth tissues (HTTs) as a promising material suitable in the indication of augmentation of maxillary and mandible defects, comparable to other high-end augmentation materials. The aim of this study was to experimentally evaluate the osteogenic potential of ground native autologous HTTs prepared by different demineralization procedures, aimed at potentiating the osteoinductive and osteoconductive properties of their organic components. The results indicate that the most effective preparation process for HTT stimulation is the application of Cleanser for 10 min followed by exposure to 0.6 N HCl for 5 min with a wash in phosphate-buffered saline solution.

3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904479

ABSTRACT

A biological method was successfully applied to synthesize spherical silver nanoparticles (AgNPs) while using the extract of lavender (Ex-L) (lat. Lavandula angustifolia) as the reducing and stabilizing agent. The produced nanoparticles were spherical with an average size of 20 nm. The AgNPs' synthesis rate confirmed the extract's excellent ability to reduce silver nanoparticles from the AgNO3 solution. The presence of good stabilizing agents was confirmed by the excellent stability of the extract. Nanoparticles' shapes and sizes did not change. UV-Vis absorption spectrometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the silver nanoparticles. The silver nanoparticles were incorporated into the PVA polymer matrix by the "ex situ" method. The polymer matrix composite with AgNPs was prepared in two ways: as a composite film and nanofibers (nonwoven textile). The anti-biofilm activity of AgNPs and the ability of AgNPs to transfer toxic properties into the polymer matrix were proved.

4.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984219

ABSTRACT

Aluminium alloy sheets cause many problems in sheet metal forming processes owing to their tendency to gall the surface of the tool. The paper presents a method for the determination of the kinematic friction coefficient of friction pairs. The determination of coefficient of friction (COF) in sheet metal forming requires specialised devices that 'simulate' friction conditions in specific areas of the formed sheet. In this article, the friction behaviour of aluminium alloy sheets was determined using the strip drawing test. The 1-mm-thick 6082 aluminium alloy sheets in T6 temper were used as test material. Different values for nominal pressures (4.38, 6.53, 8.13, 9.47, 10.63, and 11.69 MPa) and different sliding speeds (10 and 20 mm/min.) were considered. The change of friction conditions was also realised with several typical oils (hydraulic oil LHL 32, machine oil LAN 46 and engine oil SAE 5W-40 C3) commonly used in sheet metal forming operations. Friction tests were conducted at room temperature (24 °C). The main tribological mechanisms accompanying friction (adhesion, flattening, ploughing) were identified using a scanning electron microscope (SEM). The influence of the parameters of the friction process on the value of the COF was determined using artificial neural networks. The lowest value of the COF was recorded when lubricating the sheet metal surface with SAE 5W40 C3 engine oil, which is characterised as the most viscous of all tested lubricants. In dry friction conditions, a decreasing trend of the COF with increasing contact pressure was observed. In the whole range of applied contact pressures (4.38-11.69 MPa), the value of the COF during lubrication with SAE 5W40 C3 engine oil was between 0.14 and 0.17 for a sliding speed of 10 mm/min and between 0.13 and 0.16 for a sliding speed of 20 mm/min. The value of the COF during dry friction was between 0.23 and 0.28 for a sliding speed of 10 mm/min and between 0.22 and 0.26 for a sliding speed of 20 mm/min. SEM micrographs revealed that the main friction mechanism of 6082-T6 aluminium alloys sheet in contact with cold-work tool steel flattens surface asperities. The sensitivity analysis of the input parameters on the value of COF revealed that oil viscosity has the greatest impact on the value of the COF, followed by contact pressure and sliding speed.

5.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676601

ABSTRACT

This work focuses on joining steel to aluminum alloy using a novel method of joining by resistance spot welding with an insert element based on anticorrosive steel in combination with adhesive bonding. The method aims to reduce the formation of brittle intermetallic compounds by using short welding times and a different chemical composition of the insert element. In the experiment, deep-drawing low-carbon steel, HSLA zinc-coated steel and precipitation-hardened aluminum alloy 6082 T6 were used. Two types of adhesives-one based on rubber and the other based on epoxy resin-were used for adhesive bonding, while the surfaces of the materials joined were treated with a unique adhesion-improving agent based on organosilanes. The surface treatment improved the chemical bonding between the substrate and adhesive. It was proved, that the use of an insert element in combination with adhesive bonding is only relevant for those adhesives that have a load capacity just below the yield strength of the substrates. For bonded joints with higher load capacities, plastic deformation of the substrates occurs, which is unacceptable, and thus, the overall contribution of the insert element to the load capacity of the joint becomes negligible. The results also show that the combination of the resistance spot welding of the insert element and adhesive bonding facilitates the joining process of galvanized and nongalvanized steels with aluminum alloys and suppresses the effect of brittle intermetallic phases by minimizing the joining area and welding time. It is possible to use the synergistic effect of insert element welding and adhesive bonding to achieve increased energy absorption of the joint under stress.

6.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679259

ABSTRACT

The aim of the work was to prepare a polymer matrix composite doped by silver nanoparticles and analyze the influence of silver nanoparticles (AgNPs) on polymers' optical and toxic properties. Two different colloids of AgNPs were prepared by chemical reduction. The first colloid, a blue one, contains stable triangular nanoparticles (the mean size of the nanoparticles was ~75 nm). UV-vis spectrophotometry showed that the second colloid, a yellow colloid, was very unstable. Originally formed spherical particles (~11 nm in diameter) after 25 days changed into a mix of differently shaped nanoparticles (irregular, triangular, rod-like, spherical, decahedrons, etc.), and the dichroic effect was observed. Pre-prepared AgNPs were added into the PVA (poly(vinyl alcohol)) polymer matrix and PVA-AgNPs composites (poly(vinyl alcohol) doped by Ag nanoparticles) were prepared. PVA-AgNPs thin layers (by a spin-coating technique) and fibers (by electrospinning and dip-coating techniques) were prepared. TEM and SEM techniques were used to analyze the prepared composites. It was found that the addition of AgNPs caused a change in the optical and antibiofilm properties of the non-toxic and colorless polymer. The PVA-AgNPs composites not only showed a change in color but a dichroic effect was also observed on the thin layer, and a good antibiofilm effect was also observed.

7.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808712

ABSTRACT

A chemical method was successfully used to synthesize silver nanoparticles (AgNPs) with various shapes. The shape of the nanoparticles affects the color of the colloid (spherical-yellow solution, triangular-blue, a mixture of spherical and triangular-green). The NaBH4, which acts as the main reducing agent and H2O2 have a significant impact on the shape of AgNPs. It has also been shown that the ratio between precursor, reducing, and the stabilizing agent is crucial for the formation of the required nanoparticles. The light sensitivity of AgNPs and the presence of H2O2 lead to a significant change in AgNPs' shape and size with time and to the formation of the dichroic effect. UV-vis spectrophotometry, TEM, SEM/FIB, and EDX methods were used to analyze the shape, size, and composition of the nanoparticles. Polymer matrix composite with AgNPs was prepared by the "ex-situ" method.

8.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372300

ABSTRACT

Diabetes mellitus represents one of the most widespread diseases in civilization nowadays. Since the costs for treating and diagnosing of diabetes represent several billions of dollars per year, a cheap, fast, and simple sensor for diabetes diagnosis is needed. Electrochemical insulin sensors can be considered as a novel approach for diabetes diagnosis. In this study, carbon electrode with electrodeposited NiO nanoparticles was selected as a suitable electrode material for insulin determination. The morphology and surface composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). For a better understanding of insulin determination on NiO-modified electrodes, the mechanism of electrochemical reaction and the kinetic parameters were studied. They were calculated from both voltammetric and amperometric measurements. The modified carbon electrode displayed a wide linear range from 600 nM to 10 µM, a low limit of detection of 19.6 nM, and a high sensitivity of 7.06 µA/µM. The electrodes were stable for 30 cycles and were able to detect insulin even in bovine blood serum. Additionally, the temperature stability of this electrode and its storage conditions were studied with appropriate outcomes. The above results show the high promise of this electrode for detecting insulin in clinical samples.


Subject(s)
Electrochemical Techniques , Nanoparticles , Animals , Cattle , Electrodes , Humans , Insulin , Limit of Detection , Nickel
9.
Polymers (Basel) ; 13(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671457

ABSTRACT

The aim of the work was to prepare polymer matrix composite (PMC) microfibers doped by green synthesized silver nanoparticles (AgNPs). The incorporation of AgNP into the polymer matrix can provide toxic properties to the polymer. Polyvinyl alcohol (PVA) was used as a matrix. AgNPs were synthesized by the green method, where the leaf extract of Rosmarinus officinalis (R. officinalis) was used as a reduction and capping agent. PVA-AgNPs composites were prepared in two ways: the ex situ method (pre-prepared globular AgNPs with a mean diameter of 20 nm were added into polymer matrix) and the in situ method (AgNPs were synthesized in the process of polymer composite preparation; in situ synthesized nanoparticles were a mix of different shapes with a mean diameter of ~100 nm). FTIR (Infrared spectroscopy with Fourier Transformation), UV-vis (Ultraviolet-visible spectroscopy), TEM (Transmission Electron Microscope), EDX (Energy-dispersive X-ray spectroscopy), and SEM (Scanning Electron Microscope) techniques were used for the analysis of nanoparticles and prepared PMCs. Thin layers and microfibers of in situ and ex situ PMCs were prepared. The presence of AgNPs clusters was evident in both PMC thin layers. After electrospinning, the chains of nanoparticles were observed inside the fibers. The distribution of nanoparticles was improved by increasing the AgNPs volume fraction (from 5 vol.% to 20 vol.%). Toxic and antibiofilm activity of AgNPs colloid, pure PVA, and PVA-AgNPs composites against the one-cell green algae Parachlorella kessleri (P. kessleri) was analyzed. AgNPs colloid, as well as PVA-AgNPs composites, showed good toxic and antibiofilm activity, and pure PVA shows no toxic/antibiofilm activity.

10.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121458

ABSTRACT

This research study attempts to prove the concept of the applicability of hyperthermia to treating the lysozyme amyloid fibrils (LAF)'s self-assembled fibrillary aggregates by a feedback-modulated temperature controller ranging from 26 °C to 80 °C, and separately, by near-infrared (NIR) laser-irradiated cesium tungstate (CsWO3) nanoparticle (NPs). The dependence of the final morphology of the amyloidal assembly on external heating and the photothermal effect of the NPs on treating the fibrillary assembly were investigated and analyzed. Experimentally, atomic force microscopy (AFM), optical stereoscopy, and scanning electron microscopy (SEM) were used primarily to ensure mutual interaction between LAF and NPs, optically elucidate the surface contour and final fibrillary assembly upon the influence of thermal treatment, and further reveal fine-details of the optical samples. Finally, conclusive remarks are drawn that the fibrillary structures doped with the NPs exhibit an increasing degree of unique orthogonality. As the temperature rises, utter deformation of the dendritic structures of fibrillary assemblies at 70 °C was found, and NIR laser-irradiated CsWO3 NPs have been demonstrated to be useful in topically destructing pre-assembled LAFs, which may be conducive to the future development of neurodegenerative therapeutic techniques.

11.
Acta Bioeng Biomech ; 21(4): 101-110, 2019.
Article in English | MEDLINE | ID: mdl-32022801

ABSTRACT

PURPOSE: The objective of this study was to fabricate PLA-based porous scaffold by 3D printing technology and to evaluate their cytotoxicity and biocompatibility under in vitro conditions in respect to bone tissue engineering. MATERIAL AND METHODS: Pure PLA in filamentous form was processed via 3D printing technology of fused filament fabrication into porous scaffolds. The structure and porosity of scaffolds were measured by metrotomography. PLA scaffolds were pre-treated by human serum, foetal bovine serum and complete cell culture medium to enhance bio-attractivity of the scaffold's surface for the adherence of the cells. Cells were enzymatically isolated from the periosteum of the proximal tibia and then expanded in monolayer. Periosteum-derived osteoprogenitors (PDOs) were seeded on the pre-treated PLA scaffolds and subsequent cell proliferation was measured by commercially available cell proliferation assay. Adherence of PDOs on the PLA scaffold was confirmed by scanning electron microscopy (SEM). RESULTS: Prepared scaffolds had well-defined structure and were characterized by uniform distribution of pores. They were non-toxic and biocompatible with PDOs, however, PLA scaffold with the periosteum-derived progenitor cells was significantly better in the group of scaffolds pre-treated with normal human serum. CONCLUSIONS: The obtained PLA porous scaffolds favored attachment of periosteum derived progenitors and proliferation, furthermore, cells penetrated into the scaffold through the interstitial pores which was meaningful for cytocompatibility evaluation.


Subject(s)
Bone and Bones/physiology , Polyesters/pharmacology , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Acid-Base Equilibrium/drug effects , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , Middle Aged , Periosteum/cytology , Porosity , Stem Cells/cytology , Stem Cells/ultrastructure , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...