Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294683, 2023.
Article in English | MEDLINE | ID: mdl-38019812

ABSTRACT

CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.


Subject(s)
CRISPR-Cas Systems , Poly(ADP-ribose) Polymerases , Humans , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , DNA Repair , DNA Damage , DNA/genetics , DNA/metabolism , DNA Breaks , RNA
2.
CRISPR J ; 5(6): 799-812, 2022 12.
Article in English | MEDLINE | ID: mdl-36350691

ABSTRACT

At the present time, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has been widely adopted as an efficient genomic editing tool. However, there are some actual problems such as the off-target effects, cytotoxicity, and immunogenicity. The incorporation of modifications into guide RNAs permits enhancing both the efficiency and the specificity of the CRISPR-Cas9 system. In this study, we demonstrate that the inclusion of N6-methyladenosine, 5-methylcytidine, and pseudouridine in trans-activating RNA (tracrRNA) or in single guide RNA (sgRNA) enables efficient gene editing in vitro. We found that the complexes of modified guide RNAs with Cas9 protein promoted cleavage of the target short/long duplexes and plasmid substrates. In addition, the modified monomers in guide RNAs allow increasing the specificity of CRISPR-Cas9 system in vitro and promote diminishing both the immunostimulating and the cytotoxic effects of sgRNAs.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Nucleosides , RNA, Small Untranslated/genetics
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806289

ABSTRACT

Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.


Subject(s)
DNA Glycosylases , DNA/chemistry , DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Humans
4.
Genes (Basel) ; 11(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751599

ABSTRACT

In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1-DNA product complex was disrupted by DNA polymerase ß (POLß) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLß and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.


Subject(s)
DNA Glycosylases/metabolism , DNA Polymerase beta/metabolism , DNA/metabolism , Binding Sites , CRISPR-Associated Protein 9/metabolism , DNA/chemistry , DNA/genetics , DNA Damage , DNA Glycosylases/chemistry , DNA Polymerase I/metabolism , DNA Polymerase beta/chemistry , DNA Repair , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL