Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Photochem Photobiol ; 97(3): 549-551, 2021 05.
Article in English | MEDLINE | ID: mdl-33728645

ABSTRACT

Although the environmental control measure of ultraviolet germicidal irradiation (UVGI) for disinfection has not been widely used in the United States and some parts of the world in the past few decades, this technology has been well applied in Russia. UVGI technology has been particularly useful with regard to limiting TB transmission in medical facilities. There is good evidence that UV-C (180-280 nm) air disinfection can be a helpful intervention in reducing transmission of the SARS-CoV-2 virus.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Hospitals/standards , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Disinfection/instrumentation , Humans , Infection Control , Russia
2.
BMC Infect Dis ; 20(1): 543, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711457

ABSTRACT

BACKGROUND: The main advantage of GeneXpert MTB/RIF® (Xpert) molecular diagnostic technology is the rapid detection of M.tuberculosis DNA and mutations associated with rifampicin (RIF) resistance for timely initiation of appropriate treatment and, consequently, preventing further transmission of the disease. We assessed time to treatment initiation and treatment outcomes of RIF-resistant and RIF-susceptible TB patients diagnosed and treated in Vladimir TB Dispensary, Russia in 2012, before and after implementation of GeneXpert MTB/RIF® diagnostic technology. METHODS: All adult patients suspected of having TB during February-December 2012 underwent a clinical examination, chest x-ray, microscopy, culture, and phenotypic drug susceptibility testing (DST). Starting August 2012 Xpert diagnostic technology became available in the facility. We used logistic regression to compare treatment outcomes in pre-Xpert and post-Xpert periods. Kaplan-Meier curves and log-rank test were used to compare the time to treatment initiation between the groups. RESULTS: Of 402 patients screened for TB during February-December 2012, 338 were diagnosed with TB (280 RIF-susceptible, 58 RIF-resistant). RIF-resistant patients in the post-Xpert group started treatment with second-line drugs (SLD) earlier than those in pre-Xpert group (median 11 vs. 37 days, Log-rank p = 0.02). The hazard ratio for time to SLD treatment initiation was significantly higher in post-Xpert group (HR:2.06; 95%CI:1.09,3.89) compared to pre-Xpert group. Among the 53/58 RIF-resistant TB patients with available treatment outcome, 28 (53%) had successful outcomes (cured/completed treatment) including 15/26 (58%) in post-Xpert group versus 13/27 (48%) in pre-Xpert group. The observed difference, however, was not statistically significant (OR:0.69; 95%CI:0.23,2.06). Among RIF-susceptible TB cases time to treatment initiation was not significantly different between the groups (2 vs. 3 days, Log-rank p = 0.73). Of 252/280 RIF-susceptible TB cases with treatment outcome, 199 (79%) cases had successful outcome including 94/114 (82%) in post-Xpert group versus 105/138 (76%) in pre-Xpert group (OR:0.68; 95%CI:0.36,1.26). CONCLUSION: We observed that availability of Xpert for initial diagnosis significantly reduced the time to SLD treatment for RIF-resistant patients in the Vladimir TB Dispensary. Although implementation of rapid diagnostics did not improve treatment outcomes, early diagnosis of MDR-TB is important for selection of appropriate treatment regimen and prevention of transmission of drug-resistant strains of TB.


Subject(s)
Antibiotics, Antitubercular/therapeutic use , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/genetics , Nucleic Acid Amplification Techniques/methods , Rifampin/therapeutic use , Time-to-Treatment , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Female , Humans , Male , Middle Aged , Mutation , Prospective Studies , Russia , Treatment Outcome , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
3.
Lancet Infect Dis ; 17(7): 707-715, 2017 07.
Article in English | MEDLINE | ID: mdl-28499828

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. METHODS: We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. FINDINGS: The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. INTERPRETATION: MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR tuberculosis. FUNDING: US Agency for International Development and US Centers for Disease Control and Prevention, Division of Tuberculosis Elimination.


Subject(s)
Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Models, Theoretical , Asia , Humans , Mycobacterium tuberculosis/drug effects , Risk Factors , Russia , South Africa
4.
Clin Infect Dis ; 62 Suppl 3: S238-43, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27118853

ABSTRACT

Multidrug-resistant (MDR) tuberculosis, "Ebola with wings," is a significant threat to tuberculosis control efforts. Previous prevailing views that resistance was mainly acquired through poor treatment led to decades of focus on drug-sensitive rather than drug-resistant (DR) tuberculosis, driven by the World Health Organization's directly observed therapy, short course strategy. The paradigm has shifted toward recognition that most DR tuberculosis is transmitted and that there is a need for increased efforts to control DR tuberculosis. Yet most people with DR tuberculosis are untested and untreated, driving transmission in the community and in health systems in high-burden settings. The risk of nosocomial transmission is high for patients and staff alike. Lowering transmission risk for MDR tuberculosis requires a combination approach centered on rapid identification of active tuberculosis disease and tuberculosis drug resistance, followed by rapid initiation of appropriate treatment and adherence support, complemented by universal tuberculosis infection control measures in healthcare facilities. It also requires a second paradigm shift, from the classic infection control hierarchy to a novel, decentralized approach across the continuum from early diagnosis and treatment to community awareness and support. A massive scale-up of rapid diagnosis and treatment is necessary to control the MDR tuberculosis epidemic. This will not be possible without intense efforts toward the implementation of decentralized, ambulatory models of care. Increasing political will and resources need to be accompanied by a paradigm shift. Instead of focusing on diagnosed cases, recognition that transmission is driven largely by undiagnosed, untreated cases, both in the community and in healthcare settings, is necessary. This article discusses this comprehensive approach, strategies available, and associated challenges.


Subject(s)
Infection Control , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/therapeutic use , Early Diagnosis , Humans , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/prevention & control
5.
Clin Infect Dis ; 62(4): 418-430, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26508515

ABSTRACT

BACKGROUND: Resistance to second-line drugs develops during treatment of multidrug-resistant (MDR) tuberculosis, but the impact on treatment outcome has not been determined. METHODS: Patients with MDR tuberculosis starting second-line drug treatment were enrolled in a prospective cohort study. Sputum cultures were analyzed at a central reference laboratory. We compared subjects with successful and poor treatment outcomes in terms of (1) initial and acquired resistance to fluoroquinolones and second-line injectable drugs (SLIs) and (2) treatment regimens. RESULTS: Of 1244 patients with MDR tuberculosis, 973 (78.2%) had known outcomes and 232 (18.6%) were lost to follow-up. Among those with known outcomes, treatment succeeded in 85.8% with plain MDR tuberculosis, 69.7% with initial resistance to either a fluoroquinolone or an SLI, 37.5% with acquired resistance to a fluoroquinolone or SLI, 29.3% with initial and 13.0% with acquired extensively drug-resistant tuberculosis (P < .001 for trend). In contrast, among those with known outcomes, treatment success increased stepwise from 41.6% to 92.3% as the number of drugs proven effective increased from ≤1 to ≥5 (P < .001 for trend), while acquired drug resistance decreased from 12% to 16% range, depending on the drug, down to 0%-2% (P < .001 for trend). In multivariable analysis, the adjusted odds of treatment success decreased 0.62-fold (95% confidence interval, .56-.69) for each increment in drug resistance and increased 2.1-fold (1.40-3.18) for each additional effective drug, controlling for differences between programs and patients. Specific treatment, patient, and program variables were also associated with treatment outcome. CONCLUSIONS: Increasing drug resistance was associated in a logical stepwise manner with poor treatment outcomes. Acquired resistance was worse than initial resistance to the same drugs. Increasing numbers of effective drugs, specific drugs, and specific program characteristics were associated with better outcomes and less acquired resistance.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Drug Resistance, Multiple, Bacterial , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , Sputum/microbiology , Treatment Outcome , Young Adult
6.
PLoS Med ; 12(12): e1001932, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26714320

ABSTRACT

BACKGROUND: For treating multidrug-resistant tuberculosis (MDR TB), the World Health Organization (WHO) recommends a regimen of at least four second-line drugs that are likely to be effective as well as pyrazinamide. WHO guidelines indicate only marginal benefit for regimens based directly on drug susceptibility testing (DST) results. Recent evidence from isolated cohorts suggests that regimens containing more drugs may be beneficial, and that DST results are predictive of regimen effectiveness. The objective of our study was to gain insight into how regimen design affects treatment response by analyzing the association between time to sputum culture conversion and both the number of potentially effective drugs included in a regimen and the DST results of the drugs in the regimen. METHODS AND FINDINGS: We analyzed data from the Preserving Effective Tuberculosis Treatment Study (PETTS), a prospective observational study of 1,659 adults treated for MDR TB during 2005-2010 in nine countries: Estonia, Latvia, Peru, Philippines, Russian Federation, South Africa, South Korea, Thailand, and Taiwan. For all patients, monthly sputum samples were collected, and DST was performed on baseline isolates at the US Centers for Disease Control and Prevention. We included 1,137 patients in our analysis based on their having known baseline DST results for at least fluoroquinolones and second-line injectable drugs, and not having extensively drug-resistant TB. These patients were followed for a median of 20 mo (interquartile range 16-23 mo) after MDR TB treatment initiation. The primary outcome of interest was initial sputum culture conversion. We used Cox proportional hazards regression, stratifying by country to control for setting-associated confounders, and adjusting for the number of drugs to which patients' baseline isolates were resistant, baseline resistance pattern, previous treatment history, sputum smear result, and extent of disease on chest radiograph. In multivariable analysis, receiving an average of at least six potentially effective drugs (defined as drugs without a DST result indicating resistance) per day was associated with a 36% greater likelihood of sputum culture conversion than receiving an average of at least five but fewer than six potentially effective drugs per day (adjusted hazard ratio [aHR] 1.36, 95% CI 1.09-1.69). Inclusion of pyrazinamide (aHR 2.00, 95% CI 1.65-2.41) or more drugs to which baseline DST indicated susceptibility (aHR 1.65, 95% CI 1.48-1.84, per drug) in regimens was associated with greater increases in the likelihood of sputum culture conversion than including more drugs to which baseline DST indicated resistance (aHR 1.33, 95% CI 1.18-1.51, per drug). Including in the regimen more drugs for which DST was not performed was beneficial only if a minimum of three effective drugs was present in the regimen (aHR 1.39, 95% CI 1.09-1.76, per drug when three effective drugs present in regimen). The main limitation of this analysis is that it is based on observational data, not a randomized trial, and drug regimens varied across sites. However, PETTS was a uniquely large and rigorous observational study in terms of both the number of patients enrolled and the standardization of laboratory testing. Other limitations include the assumption of equivalent efficacy across drugs in a category, incomplete data on adherence, and the fact that the analysis considers only initial sputum culture conversion, not reversion or long-term relapse. CONCLUSIONS: MDR TB regimens including more potentially effective drugs than the minimum of five currently recommended by WHO may encourage improved response to treatment in patients with MDR TB. Rapid access to high-quality DST results could facilitate the design of more effective individualized regimens. Randomized controlled trials are necessary to confirm whether individualized regimens with more than five drugs can indeed achieve better cure rates than current recommended regimens.


Subject(s)
Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Clinical Protocols , Cohort Studies , Drug Therapy, Combination/statistics & numerical data , Global Health , Humans , Microbial Sensitivity Tests , Middle Aged , Proportional Hazards Models , Prospective Studies , Sputum/microbiology , Young Adult
7.
Emerg Infect Dis ; 21(11): 2048-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26488585

ABSTRACT

We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Pulmonary/epidemiology , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Female , Humans , Male , Mass Screening , Middle Aged , Russia/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy
8.
Emerg Infect Dis ; 21(6): 977-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25988299

ABSTRACT

Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5-6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2-4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Humans , Microbial Sensitivity Tests
9.
Lancet Respir Med ; 3(3): 201-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25726085

ABSTRACT

BACKGROUND: Sputum culture conversion is often used as an early microbiological endpoint in phase 2 clinical trials of tuberculosis treatment on the basis of its assumed predictive value for end-of-treatment outcome, particularly in patients with drug-susceptible tuberculosis. We aimed to assess the validity of sputum culture conversion on solid media at varying timepoints, and the time to conversion, as prognostic markers for end-of-treatment outcome in patients with multidrug-resistant (MDR) tuberculosis. METHODS: We analysed data from two large cohort studies of patients with MDR tuberculosis. We defined sputum culture conversion as two or more consecutive negative cultures from sputum samples obtained at least 30 days apart. To estimate the association of 2 month and 6 month conversion with successful treatment outcome, we calculated odds ratios (ORs) and 95% CIs with random-effects multivariable logistic regression. We calculated predictive values with bivariate random-effects generalised linear mixed modelling. FINDINGS: We assessed data for 1712 patients who had treatment success, treatment failure, or who died. Among patients with treatment success, median time to sputum culture conversion was significantly shorter than in those who had poor outcomes (2 months [IQR 1-3] vs 7 months [3 to ≥24]; log-rank p<0·0001). Furthermore, conversion status at 6 months (adjusted OR 14·07 [95% CI 10·05-19·71]) was significantly associated with treatment success compared with failure or death. Sputum culture conversion status at 2 months was significantly associated with treatment success only in patients who were HIV negative (adjusted OR 4·12 [95% CI 2·25-7·54]) or who had unknown HIV infection (3·59 [1·96-6·58]), but not in those who were HIV positive (0·38 [0·12-1·18]). Thus, the overall association of sputum culture conversion with a successful outcome was substantially greater at 6 months than at 2 months. 2 month conversion had low sensitivity (27·3% [95% confidence limit 16·6-41·4]) and high specificity (89·8% [82·3-94·4]) for prediction of treatment success. Conversely, 6 month sputum culture conversion status had high sensitivity (91·8% [85·9-95·4]), but moderate specificity (57·8% [42·5-71·6]). The maximum combined sensitivity and specificity for sputum culture conversion was reached between month 6 and month 10 of treatment. INTERPRETATION: Time to sputum culture conversion, conversion status at 6 months, and conversion status at 2 months in patients without known HIV infection can be considered as proxy markers of end-of-treatment outcome in patients with MDR tuberculosis, although the overall association with treatment success is substantially stronger for 6 month than for 2 month conversion status. Investigators should consider these results regarding the validity of sputum culture conversion at various timepoints as an early predictor of treatment efficacy when designing phase 2 studies before investing substantial resources in large, long-term, phase 3 trials of new treatments for MDR tuberculosis. FUNDING: US Agency for International Development, US Centers for Disease Control and Prevention, Division of Intramural Research of the US National Institute of Allergy and Infectious Diseases, Korea Centers for Disease Control and Prevention.


Subject(s)
Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adolescent , Adult , Aged , Humans , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , Treatment Outcome , Young Adult
11.
Clin Infect Dis ; 59(8): 1049-63, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25057101

ABSTRACT

BACKGROUND: Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. METHODS: To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. RESULTS: In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16-.47) for XDR tuberculosis, 0.28 (.17-.45) for FQ, and 0.15 (.06-.39) to 0.60 (.34-1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07-.62) for acquired XDR tuberculosis and 0.23 (.09-.59) for acquired FQ resistance. CONCLUSIONS: Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Adolescent , Adult , Aged , Cohort Studies , Female , Genotyping Techniques , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , Selection, Genetic , Sputum/microbiology , Young Adult
12.
Eur Respir J ; 44(1): 23-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24659544

ABSTRACT

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients with MDR/XDR-TB is extremely complex for medical, social and public health systems. The treatment with currently available anti-TB therapies to achieve relapse-free cure is long and undermined by a high frequency of adverse drug events, suboptimal treatment adherence, high costs and low treatment success rates. Availability of optimal management for patients with MDR/XDR-TB is limited even in the European Region. In the absence of a preventive vaccine, more effective diagnostic tools and novel therapeutic interventions the control of MDR/XDR-TB will be extremely difficult. Despite recent scientific advances in MDR/XDR-TB care, decisions for the management of patients with MDR/XDR-TB and their contacts often rely on expert opinions, rather than on clinical evidence. This document summarises the current knowledge on the prevention, diagnosis and treatment of adults and children with MDR/XDR-TB and their contacts, and provides expert consensus recommendations on questions where scientific evidence is still lacking.


Subject(s)
Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/therapy , Tuberculosis, Multidrug-Resistant/therapy , Case Management , Clinical Trials as Topic , Communicable Disease Control , Consensus , Disease Management , Disease-Free Survival , Europe , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/prevention & control , Geography , Humans , Infectious Disease Medicine/standards , Public Health , Recurrence , Treatment Outcome , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/prevention & control , World Health Organization
13.
Lancet ; 380(9851): 1406-17, 2012 Oct 20.
Article in English | MEDLINE | ID: mdl-22938757

ABSTRACT

BACKGROUND: The prevalence of extensively drug-resistant (XDR) tuberculosis is increasing due to the expanded use of second-line drugs in people with multidrug-resistant (MDR) disease. We prospectively assessed resistance to second-line antituberculosis drugs in eight countries. METHODS: From Jan 1, 2005, to Dec 31, 2008, we enrolled consecutive adults with locally confirmed pulmonary MDR tuberculosis at the start of second-line treatment in Estonia, Latvia, Peru, Philippines, Russia, South Africa, South Korea, and Thailand. Drug-susceptibility testing for study purposes was done centrally at the Centers for Disease Control and Prevention for 11 first-line and second-line drugs. We compared the results with clinical and epidemiological data to identify risk factors for resistance to second-line drugs and XDR tuberculosis. FINDINGS: Among 1278 patients, 43·7% showed resistance to at least one second-line drug, 20·0% to at least one second-line injectable drug, and 12·9% to at least one fluoroquinolone. 6·7% of patients had XDR tuberculosis (range across study sites 0·8-15·2%). Previous treatment with second-line drugs was consistently the strongest risk factor for resistance to these drugs, which increased the risk of XDR tuberculosis by more than four times. Fluoroquinolone resistance and XDR tuberculosis were more frequent in women than in men. Unemployment, alcohol abuse, and smoking were associated with resistance to second-line injectable drugs across countries. Other risk factors differed between drugs and countries. INTERPRETATION: Previous treatment with second-line drugs is a strong, consistent risk factor for resistance to these drugs, including XDR tuberculosis. Representative drug-susceptibility results could guide in-country policies for laboratory capacity and diagnostic strategies. FUNDING: US Agency for International Development, Centers for Disease Control and Prevention, National Institutes of Health/National Institute of Allergy and Infectious Diseases, and Korean Ministry of Health and Welfare.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Female , Humans , Male , Middle Aged , Prevalence , Risk Factors , Socioeconomic Factors , Tuberculosis, Multidrug-Resistant/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...